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１．はじめに

エージェントベースモデル(ABM)の状態推定は近年盛んな研究トピックとなっている．例えば， Malleson et al.(2020) は群衆移動を表現した ABM に粒子フィル
タを適用してエージェントの位置推定を行った．Malleson et al.(2020) では個人がセンサデバイスを保有する状況を想定し，個々の エージェントの位置がノイ
ズを伴って観測されることを仮定している．Malleson et al.(2020) が課題として指摘するように，個々のエージェントからの観測よりも，空間に配置するセンサ
によってエージェントから集計量を観測する方が取得が現実的な場合もある．近年では，カメラ画像を用いて人数カウントデータなどの集計量を観測できる空
間配置型のセンサが登場している．そこで本研究では，群衆移動から人数カウントデータが観測される状況を ABM と負の二項分布を用いた状態空間モデルで
定式化し，粒子フィルタでエージェントの状態推定を行う方法を提案する．そして，センサ配置が状態推定に与える影響を双子実験で分析する．

２．提案手法

３．実験設計

４．双子実験

参考文献

• システムモデル：Malleson et al.(2020) のABMを拡張 • 観測モデル：人数カウントデータの観測を表現

合理性高い

合理性低い

logit(βi) ∼ N(−2.0,0.32)

logit(βi) ∼ N(2.0,0.32)

：人数カウントデータ

ABMで表現できる群集の人数 表現しきれない群集の人数

• センサ配置がエージェントの状態推定に与える影響を分析
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�.� As explained above, we assume that �i is in (0.0, 1.0). Then, the logit-normal distribution

logit(�i) ⇠ N(logit(�i)|µ,�2) (��)

where logit(�i) = log(�i/(1� �i)) is appropriate assumption as true distribution of agent’s rationality in that
the support is (0, 1). The logit-normal distribution allows us to adjust themean and variance of the distribution
by controlling the parameters µ and �2. Thus, it is suitable to represent biased distribution of agent rationality
parameter. We now introduce a hierarchical prior distribution to µ and �2 as

(µ, 1/�2) ⇠ NormalGamma(µ, 1/�2|µ0, ⇢, a, b) (��)

where µ0, ⇢, a and b are hyper parameters of the normal-gamma distribution. It is natural to use the normal-
gamma distribution because it is conjugate prior distribution for normal distribution although analytical pos-
terior distribution cannot be derived in this case. An ensemble that approximates the prior distribution

p(�1, · · · ,�K |µ0, ⇢, a, b)

is obtainedby repeating following samplingprocedureN times. The first step is todrawasample (µ,�2)(i) from
Eq. ��. The second step is to draw samples �(i)

k (k = 1, · · · ,K) independently from Eq. �� where parameters
are fixed to (µ,�2)(i).

�.� Next, the entrance gate number ei takes categorical values. Therefore, the categorical distribution

ei ⇠ Categorical(ei|q1, · · · , qME ) (��)

is appropriate assumption as true distribution andparameters q1, · · · , qME represents the ratio of the entrance
which is used for agents. It is natural to use the Dirichlet distribution

(q1, · · · , qME ) ⇠ Dirichlet(q1, · · · , qME |�1, · · · ,�ME ) (��)

as a hierarchical distribution where �i for i = 1, · · · ,ME is hyper parameter of the Dirichlet distribution. The
Dirichlet distribution is a conjugate prior distribution of the categorical distribution. Thus, it is natural to use
theDirichlet distribution as aprior distribution althoughwecannot obtain analytical posterior distribution. The
procedure to obtain an ensemble that approximates the prior distribution p(e1, · · · , eK |�1, · · · ,�ME ) is simi-
lar to sampling�i and to repeat followingprocedureN times. The first step is todrawa sample (q1, · · · , qME )(i)

from Eq. ��. The second step is to draw samples e(i)k (k = 1, · · · ,K) independently from Eq. ��where param-
eters are fixed to (q1, · · · , qME )(i). Both the Dirichlet distribution and the normal-gamma distribution require
specification of hyper parameter values. It is better to specify the hyper parameter values to have a dispersed
distribution because we do not know true parameter values in real applications.

Statistics of Agents for Estimation

�.�� As described in section �, we are interested in estimating statistics calculated from state and parameters of
individual agents. Therefore, the statistics computed from xt are introduced. First, the number of people in
each grid on the environment is denoted as

zt = h(xt) (��)

whereh is already defined as Eq. �. Second, we define a statistic

R
D
i,t =

|{j 2 {1, · · · ,K}|dj,t = i}|
K

(��)

which represents the ratio of destination gate number iwhich agent moves toward at step t. Third, a statistic

R
E
i =

|{j 2 {1, · · · ,K}|ej = i}|
K

(��)

is denoted as the ratio of entrance gate number iwhich agent enters initially. At last, we define a statistic

�̄ =
1

K

KX

i=1

�i. (��)
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Figure �: Same as Fig. �. But for experiments on observation designs.

prior distributions for parameter estimation in system such that agent heterogeneity is represented by individ-
ual agent parameters. Additional system noises which are not included in the original ABM are also important
for state estimation of individual agents. Regarding observation designs, there are designs that can secure the
same degree of estimation accuracy even if the number of sensor is reduced. Moreover, the desirable observa-
tion design changes according to state and parameters of interest.

�.� Thereare several limitations in this study. In this study,weadopted theparticle filter that is suitable for ABMthat
can be interpreted as a nonlinear non-Gaussian system. However, the particle filter inherently has a problemof
degeneracy in themethod itself. This is a negative aspect that accompanies the advantagewhich does not alter
the state dynamically described in Malleson et al. (����). We investigatedmitigation strategies against particle
degeneracy problem. Another possible direction to suppress the degeneracy is to use another nonlinear filter
like the EnKF that dynamically update the state. But it is unclear how to treat the categorical variables that
agent has because typical nonlinear filters such as the EnKF assume continuous variable in state vector.

�.� There is a room for investigation on how to design additional system noise in the particle filter. The system
noise contained in the ABM itself which perturbs the agent’s position and destination is insu�icient to prevent
degeneracy. One option is to add system noise to compose amore diverse state than is included in the original
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• エージェントの合理性の推定には中央付近へのセンサ配置が必要

[1] Malleson, N., Minors, K., Kieu, L. M., Ward, J. A., West, A., and Heppenstall, A. (2020). Simulating Crowds in Real Time with Agent-Based Modelling and a Particle Filter, Journal of Artificial Societies and Social Simulation, 23(3)3. 

• 推定するエージェントの統計量

負の二項分布による人数カウントデータのモデル化

：グリッド i のエージェント数

表現誤差の導入

• 時点 t におけるエージェント i の6次元状態ベクトル

時点 t におけるエージェント i の6次元状態ベクトル

if he/she collides other agent he/she changes his/her position and speed of moving. As explained in section �,
the StationSimmodel does not have agent’s state that can not be observed directly. In order to estimate state
that agents internally have, we extend the original StationSimmodel.

�.� We extend the original StationSim by adding one feature. The feature is to let agent have a state of destination
gate. An agent i changes the destination gate dynamically when he/she collides the other one. The agent i
updates destination gate di,t to j 2 {1, · · · ,MD} at step t according to probability

pi,j,t =
exp (��iri,j,t)

PMD

j0 exp (��iri,j0,t)
(�)

where

ri,j,t =
q

(xi,t �X
D
j )2 + (yi,t � Y

D
j )2

and tuples (xi,t, yi,t) and (XD
j , Y

D
j ) represent current position of agent i at step t and position of destination

gate j, respectively. Eq. � is based on the so�-max decision model described in Reverdy & Leonard (����). The
parameter �i > 0 is called inverse temperature. In the limit �i ! 0+, all options are equally probable. In the
limit �i ! 1, the option with highest value of �ri,j,t is deterministically selected. Therefore, �i can be con-
sidered as a rationality parameter with respect to distance ri,j,t from current position of agent i to destination
gate j.

State-Space Representation

�.� In order to apply the particle filter, it is necessary to formulate the state-spacemodel that consists of the system
modelwhichdescribes theprocessofABMandtheobservationmodelwhichexpressesdatagenerationprocess.
As explained in section �, the system model consists of a state vector xt, a system noise vt and a nonlinear
function f . The state vector is defined as

xt ⌘ (xT
1,t, · · · ,xT

K,t)
T (�)

where xi,t is a state vector of agent i at step t andK is the number of agent. The state vector xi,t is defined as

xi,t ⌘ (si,t, xi,t, yi,t, di,t, ei,�i)
T (�)

where si,t is a variable that takes 1 if the agent is moving on the environment and 0 otherwise, xi,t and yi,t are
coordinates in �-dimensional space, respectively, di,t is destination gate number that agent is heading to, ei is
entrance gate number where agent entered and �i is rationality parameter in Eq. �. Note that si,t, xi,t, yi,t and
di,t are state variables and ei and �i are parameters of agents because the former are dynamic and the latter
are static. The system noise is defined as

vt ⌘ (vT
1,t, · · · ,vT

K,t),vt ⇠ p(vt) (�)

where vi,t is a system noise for agent i at step t. vi,t is defined as (v1,i,t, v2,i,t)T and v1,i,t is a wiggle distance
and v2,i,t is switching probability to select destination. The nonlinear function f is described by the extended
StationSimexplained in section�.�. Obviously, the functionf is not closed formand implementedasaprogram,
however, it is just anonlinear function in the frameworkof state-spacemodelbecause the statext is determined
by the state xt�1 and the system noise vt.

�.� Thesystemnoisevt in Eq. �onlya�ects thecoordinatesand thedestinationgatenumberof agentswhocollided
the other one. It does not produce the diversity of agents so that the degeneracy problem may occur when
carrying out the particle filters. With the aimof suppressing the particle degeneracy, we also consider following
system noise

ṽt ⌘ (ṽT
1,t, · · · , ṽT

K,t), ṽt ⇠ p(ṽt) (�)

where ṽt is defined as (v1,i,t, v2,i,t, v3,i,t)T and v1,i,t and v2,i,t are same as Eq. �. The additional system noise
v3,i,t picks up the agent number i randomly and then exchanges the values of i-th and the i + 1-th agent’s
state vector. In Malleson et al. (����), Gaussian noise is added to coordinates of agents. In Eq. �, we intend to
generate diversity of particles including state other than coordinates by exchanging two agents randomlywhile
preventing inconsistent values. We expect that this exchange will diversify the agents that make up the ABM.
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K体のエージェントの状態を並べた 6K 次元の状態ベクトル
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ABMの時間発展

�.� Second proposing direction is to use mitigation strategy against particle degeneracy by increasing diversity of
particles in the particle filter. Suppose that the heterogeneity of individual agents is represented by parame-
ter distribution and we are interested in estimating the parameters of agents. If various agents with di�erent
parameters are generated by use of hierarchical prior distribution, the diversity of particles is expected to be
increased at initial state. Next, if an appropriate systemnoise is introducedwhen carrying out the particle filter,
the diversity of particles will be provided in general. Therefore, the particle degeneracy can be suppressed by
adding system noise which is not included in original ABM.

�.� The purpose of this study is to survey the conditionwhich leads to successful estimation results of state and pa-
rameters in ABM coupled with the particle filter by using aggregated quantities as observation and introducing
hierarchical prior distribution and additional system noise. We use an ’identical twin’ experiments approach
adopted in Malleson et al. (����). In the framework of ’identical twin’ experiments, the pseudo-truth data is
generated from true model which includes an ABM with true settings. Then, the state and parameters will be
estimated by applying the particle filter and using the pseudo-truth observation data. As explained inMalleson
et al. (����), this approach has advantage in thatwe can survey the estimation accuracy of the particle filter be-
cause true state and parameters are known. This approach is familiar framework for investigating estimation
accuracy as we can see similar approaches taken in Bai et al. (����) and Lueck et al. (����).

�.�� In order to carry out the ’identical twin’ experiments, it is necessary to setup a case study of the ABM. We will
use the StationSim model introduced in Malleson et al. (����) as the case study because this model is simple
ABM and already surveyed by using the particle filter. Then, we will extend the StationSim model. The reason
for extending the model is that we want to estimate state and parameters of agents which cannot be observed
directly. In Malleson et al. (����), the state consists of positions of agents which are able to be observed by
sensors. But if there are internal state of agents which cannot be observed directly by sensors, it will be more
di�icult to estimate. To this end, we will extend the original StationSimmodel by adding one feature.

Preliminaries

State-Space Model

�.� In order to apply the particle filter to ABMs, it is useful to introduce a framework of state-space model. A state-
space model consists of a systemmodel and an observation model. The systemmodel represents time evolu-
tion of system that modeler defined. The observation model represents observation data generation process.
A consensus on how to represent an ABM as a state-space model cannot be confirmed in previous studies but
it is intuitive and easy to formulate to represent the ABM as a system model and describe the process of data
generation from the ABM as an observationmodel. In fact, in studies like Lueck et al. (����) and Rai &Hu (����),
the ABMof crowdmovements is expressed as a systemmodel and the number of people obtained from theABM
is expressed as an observation model.

�.� In the case of ABMs, the systemmodel can be expressed as

xt = f(xt�1,vt),vt ⇠ p(vt) (�)

wherext is a state vector,vt is a systemnoise andf is a nonlinear function. The state vectorxt is a vectorwhich
consists of stateandparametersof all agents in theABM.Note that the state vector cancontain staticparameters
of agents for estimation purpose (Kitagawa ����). The systemnoise vt is a stochastic noise which is introduced
to the ABM in each step according to probability density p(vt). The nonlinear function f represents the process
of the ABM. Note that the nonlinear functionf can be a programmatic representations that typical ABMs adopt.
Therefore, Eq. � summarizes aprocessof theABMthat calculates thenewstateof agentsbasedonprevious state
of agents and noise term introduced artificially.

�.� The observation model represents data generation process from the ABM as

yt ⇠ p(yt|xt) (�)

whereyt is an observation vector and p(yt|xt) is a probability distribution. In this study, we assume that data is
generated fromaggregated quantities based on state of agents. Based on this assumption, for example, people
count data can be represented by a generation process for count data like the Poisson distribution. Moreover,
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�.� As explained above, we assume that �i is in (0.0, 1.0). Then, the logit-normal distribution

logit(�i) ⇠ N(logit(�i)|µ,�2) (��)

where logit(�i) = log(�i/(1� �i)) is appropriate assumption as true distribution of agent’s rationality in that
the support is (0, 1). The logit-normal distribution allows us to adjust themean and variance of the distribution
by controlling the parameters µ and �2. Thus, it is suitable to represent biased distribution of agent rationality
parameter. We now introduce a hierarchical prior distribution to µ and �2 as

(µ, 1/�2) ⇠ NormalGamma(µ, 1/�2|µ0, ⇢, a, b) (��)

where µ0, ⇢, a and b are hyper parameters of the normal-gamma distribution. It is natural to use the normal-
gamma distribution because it is conjugate prior distribution for normal distribution although analytical pos-
terior distribution cannot be derived in this case. An ensemble that approximates the prior distribution

p(�1, · · · ,�K |µ0, ⇢, a, b)

is obtainedby repeating following samplingprocedureN times. The first step is todrawasample (µ,�2)(i) from
Eq. ��. The second step is to draw samples �(i)

k (k = 1, · · · ,K) independently from Eq. �� where parameters
are fixed to (µ,�2)(i).

�.� Next, the entrance gate number ei takes categorical values. Therefore, the categorical distribution

ei ⇠ Categorical(ei|q1, · · · , qME ) (��)

is appropriate assumption as true distribution andparameters q1, · · · , qME represents the ratio of the entrance
which is used for agents. It is natural to use the Dirichlet distribution

(q1, · · · , qME ) ⇠ Dirichlet(q1, · · · , qME |�1, · · · ,�ME ) (��)

as a hierarchical distribution where �i for i = 1, · · · ,ME is hyper parameter of the Dirichlet distribution. The
Dirichlet distribution is a conjugate prior distribution of the categorical distribution. Thus, it is natural to use
theDirichlet distribution as aprior distribution althoughwecannot obtain analytical posterior distribution. The
procedure to obtain an ensemble that approximates the prior distribution p(e1, · · · , eK |�1, · · · ,�ME ) is simi-
lar to sampling�i and to repeat followingprocedureN times. The first step is todrawa sample (q1, · · · , qME )(i)

from Eq. ��. The second step is to draw samples e(i)k (k = 1, · · · ,K) independently from Eq. ��where param-
eters are fixed to (q1, · · · , qME )(i). Both the Dirichlet distribution and the normal-gamma distribution require
specification of hyper parameter values. It is better to specify the hyper parameter values to have a dispersed
distribution because we do not know true parameter values in real applications.

Statistics of Agents for Estimation

�.�� As described in section �, we are interested in estimating statistics calculated from state and parameters of
individual agents. Therefore, the statistics computed from xt are introduced. First, the number of people in
each grid on the environment is denoted as

zt = h(xt) (��)

whereh is already defined as Eq. �. Second, we define a statistic

R
D
i,t =

|{j 2 {1, · · · ,K}|dj,t = i}|
K

(��)

which represents the ratio of destination gate number iwhich agent moves toward at step t. Third, a statistic

R
E
i =

|{j 2 {1, · · · ,K}|ej = i}|
K

(��)

is denoted as the ratio of entrance gate number iwhich agent enters initially. At last, we define a statistic

�̄ =
1

K

KX

i=1

�i. (��)

Anonymised review copy Doi: ��.�����/jasss.xxxx

�.� As explained above, we assume that �i is in (0.0, 1.0). Then, the logit-normal distribution

logit(�i) ⇠ N(logit(�i)|µ,�2) (��)

where logit(�i) = log(�i/(1� �i)) is appropriate assumption as true distribution of agent’s rationality in that
the support is (0, 1). The logit-normal distribution allows us to adjust themean and variance of the distribution
by controlling the parameters µ and �2. Thus, it is suitable to represent biased distribution of agent rationality
parameter. We now introduce a hierarchical prior distribution to µ and �2 as

(µ, 1/�2) ⇠ NormalGamma(µ, 1/�2|µ0, ⇢, a, b) (��)

where µ0, ⇢, a and b are hyper parameters of the normal-gamma distribution. It is natural to use the normal-
gamma distribution because it is conjugate prior distribution for normal distribution although analytical pos-
terior distribution cannot be derived in this case. An ensemble that approximates the prior distribution

p(�1, · · · ,�K |µ0, ⇢, a, b)

is obtainedby repeating following samplingprocedureN times. The first step is todrawasample (µ,�2)(i) from
Eq. ��. The second step is to draw samples �(i)

k (k = 1, · · · ,K) independently from Eq. �� where parameters
are fixed to (µ,�2)(i).

�.� Next, the entrance gate number ei takes categorical values. Therefore, the categorical distribution

ei ⇠ Categorical(ei|q1, · · · , qME ) (��)

is appropriate assumption as true distribution andparameters q1, · · · , qME represents the ratio of the entrance
which is used for agents. It is natural to use the Dirichlet distribution

(q1, · · · , qME ) ⇠ Dirichlet(q1, · · · , qME |�1, · · · ,�ME ) (��)

as a hierarchical distribution where �i for i = 1, · · · ,ME is hyper parameter of the Dirichlet distribution. The
Dirichlet distribution is a conjugate prior distribution of the categorical distribution. Thus, it is natural to use
theDirichlet distribution as aprior distribution althoughwecannot obtain analytical posterior distribution. The
procedure to obtain an ensemble that approximates the prior distribution p(e1, · · · , eK |�1, · · · ,�ME ) is simi-
lar to sampling�i and to repeat followingprocedureN times. The first step is todrawa sample (q1, · · · , qME )(i)

from Eq. ��. The second step is to draw samples e(i)k (k = 1, · · · ,K) independently from Eq. ��where param-
eters are fixed to (q1, · · · , qME )(i). Both the Dirichlet distribution and the normal-gamma distribution require
specification of hyper parameter values. It is better to specify the hyper parameter values to have a dispersed
distribution because we do not know true parameter values in real applications.

Statistics of Agents for Estimation

�.�� As described in section �, we are interested in estimating statistics calculated from state and parameters of
individual agents. Therefore, the statistics computed from xt are introduced. First, the number of people in
each grid on the environment is denoted as

zt = h(xt) (��)

whereh is already defined as Eq. �. Second, we define a statistic

R
D
i,t =

|{j 2 {1, · · · ,K}|dj,t = i}|
K

(��)

which represents the ratio of destination gate number iwhich agent moves toward at step t. Third, a statistic

R
E
i =

|{j 2 {1, · · · ,K}|ej = i}|
K

(��)

is denoted as the ratio of entrance gate number iwhich agent enters initially. At last, we define a statistic

�̄ =
1

K

KX

i=1

�i. (��)

Anonymised review copy Doi: ��.�����/jasss.xxxx

入場入口が i のエージェントの割合

目標出口が i のエージェントの割合


