# Geometry of hyperbolicity cones

## Bruno F. Lourenço **Department of Statistical Inference and Mathematics Associate Professor**

Based on joint works with Masaru Ito (Nihon U.), Vera Roshchina (UNSW) and James Saunderson (Monash U.)

## Hyperbolic polynomial and hyperbolicity 1 cones

Let  $p : \mathbb{R}^n \to \mathbb{R}$  be a homogenous polynomial of degree d and  $e \in \mathbb{R}^n$  such that p(e) > 0. If for every  $x \in \mathbb{R}^n$ 

 $t \mapsto p(x - te)$ 

has only real roots, then p is **hyperbolic** along e [1, 2, 7].

For  $x \in \mathbb{R}^n$ , denote the roots of  $t \mapsto p(x - te)$  by  $\lambda_1(x), \ldots, \lambda_d(x)$ . Then, the corresponding **hyperbolicity cone** is

$$\Lambda_+(p, e) \coloneqq \{x \in \mathbb{R}^n \mid \lambda_i(x) \ge 0, i = 1, \dots, d\}.$$

Examples:

• 
$$p(x) \coloneqq x_1 \cdots x_n$$
,  $e \coloneqq (1, \dots, 1) \Rightarrow \Lambda_+(p, e) = \mathbb{R}^n_+$ 

# Automorphisms of ROG hyperbolicity cones 4 and their derivative relaxations

For simplicity, we denote  $\Lambda_+(p, e)$  by  $\Lambda_+$ . **Renegar's derivative relaxations**: The following characterization holds

$$\Lambda_{+} = \{ x \in \mathbb{R}^{n} \mid p(x) \geq 0, D_{e}^{1}p(x) \geq 0, \dots, D_{e}^{d-1}p(x) \geq 0 \}.$$

The *m*-th order derivative relaxation of  $\Lambda_+$  is

$$\Lambda_{+}^{(m)} = \{ x \in \mathbb{R}^{n} \mid D_{e}^{m} p(x) \ge 0, \dots, D_{e}^{d-1} p(x) \ge 0 \}.$$

We have the following inclusions.

$$\Lambda_{+} = \Lambda_{+}^{(0)} \subseteq \Lambda_{+}^{(1)} \subseteq \cdots \subseteq \Lambda_{+}^{(d-1)}$$



•  $p(X) := \det X, e := I_n \Rightarrow \Lambda_+(p, e) = \mathcal{S}_+^n$ 

• All symmetric cones are hyperbolicity cones.

**Spectrahedral cone:**  $\mathcal{K}$  is a spectrahedral cone  $\stackrel{\text{def}}{\iff}$  there exists a linear subspace  $L \subseteq S^n$  such that  $\mathcal{K} \cong S^n_+ \cap L$ .

Lax Conjecture: Is every hyperbolicity cone isomorphic to a spectrahedral cone (i.e., a slice of a positive semidefinite cone)?

#### Goals of this project 1.1

Study the **convex geometric properties** of hyperbolicity cones and spectrahedral cones.

#### **Facial exposedness** 2

Let  $\mathcal{K} \subseteq \mathbb{R}^n$  be a closed convex cone. We have the following definitions. •  $\mathcal{K}$  is **amenable** [4]  $\stackrel{\text{def}}{\iff}$  for every face  $\mathcal{F} \leq \mathcal{K}$  there is  $\kappa > 0$  such that

dist  $(x, \mathcal{F}) \leq \kappa$ dist  $(x, \mathcal{K}), \quad \forall x \in \text{span } \mathcal{F}.$ 

•  $\mathcal{K}$  is **facially exposed**  $\stackrel{\text{def}}{\iff}$  for every face  $\mathcal{F} \leq \mathcal{K}$ , there exists a supporting hyperplane H of  $\mathcal{K}$  such that  $\mathcal{F} = \mathcal{K} \cap H$ .

Amenability is a **strictly stronger** property than facial exposedness because every amenable cone is facially exposed and there are examples of facial exposed cones that are not amenable.

Some new results:

- Every spectrahedral cone is amenable. [6]
- Every hyperbolicity cone is amenable. [5]

### New results on automorphisms of ROG hyperbol-4.1 icity cones

**Theorem 4.1** ([3]). Suppose that  $\Lambda_+$  is regular and ROG. For  $1 \leq k \leq k$  $\deg p - 3$  we have

$$\operatorname{Aut}(\Lambda_{+}^{(k)}) = \{A \in \operatorname{Aut}(\Lambda_{+}) \mid A(\mathbb{R}_{+}e) = \mathbb{R}_{+}e\}.$$

**Theorem 4.2** ([3]). For  $n \ge 4$  and k with  $1 \le k \le n - 3$ , we have

Aut $(\mathbb{R}^{n,(k)}_{+}) = \{ \alpha P \mid \alpha > 0, P \text{ is a permutation matrix} \}$ Aut $(\mathcal{S}^{n,(k)}_{+}) = \{ \alpha L_Q \mid \alpha > 0, Q \text{ is a } n \times n \text{ orthogonal matrix} \},$ 

where  $L_Q : S^n \to S^n$  is the map such that  $L_Q(X) = QXQ^T$  holds for every  $X \in S^n$ .

# 参考文献

#### 3 **Rank-one generated hyperbolicity cones**

Given  $p : \mathbb{R}^n \to \mathbb{R}$  a hyperbolicity polynomial we define rank (x) as the number of nonzero eigenvalues of x. That is,

rank (x) = number of nonzero roots of  $t \mapsto p(x - te)$ .

From now, we suppose that  $\Lambda_+(p, e)$  is **regular** (i.e., **pointed** and **full**dimensional).

 $\Lambda_+(p, e)$  is **rank-one generated (ROG)** [3]  $\stackrel{\text{det}}{\iff}$  every extreme ray of  $\Lambda_+(p, e)$  is generated by a rank 1 element.

Examples: all symmetric cones and all spectrahedral cones whose extreme rays correspond to rank 1 matrices.

- [1] L. Gårding. An inequality for hyperbolic polynomials. Journal of Mathematics and Mechanics, 8(6):957–965, 1959.
- [2] O. Güler. Hyperbolic polynomials and interior point methods for convex programming. Mathematics of Operations Research, 22(2):350-377, 1997.
- [3] M. Ito and B. F. Lourenço. Automorphisms of rank-one generated hyperbolicity cones and their derivative relaxations. SIAM Journal on Applied Algebra and Geometry, 7(1):236–263, 2023.
- [4] B. F. Lourenço. Amenable cones: error bounds without constraint qualifications. Mathematical Programming, 186:1–48, 2021.
- [5] B. F. Lourenço, V. Roshchina, and J. Saunderson. Hyperbolicity cones are amenable. arXiv e-prints, 2021. To appear in Mathematical Programming. arXiv:2102.06359.
- [6] B. F. Lourenço, V. Roshchina, and J. Saunderson. Amenable cones are particularly nice. SIAM Journal on Optimization, 32(3):2347–2375, 2022.
- [7] J. Renegar. Hyperbolic programs, and their derivative relaxations. Foundations of Computational Mathe*matics*, 6(1):59–79, 2006.



# The Institute of Statistical Mathematics