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1 Hyperbolic polynomial and hyperbolicity

cones

Let p : Rn → R be a homogenous polynomial of degree d and e ∈ Rn such
that p(e) > 0. If for every x ∈ Rn

t 7→ p(x − te)

has only real roots, then p is hyperbolic along e [1, 2, 7].
For x ∈ Rn, denote the roots of t 7→ p(x − te) by λ1(x), . . . , λd(x).

Then, the corresponding hyperbolicity cone is

Λ+(p, e) := {x ∈ Rn | λi(x) ≥ 0, i = 1, . . . , d}.

Examples:

� p(x) := x1 · · · xn,　e := (1, . . . , 1) ⇒ Λ+(p, e) = Rn+
� p(X) := detX, e := In ⇒ Λ+(p, e) = Sn+
� All symmetric cones are hyperbolicity cones.

Spectrahedral cone: K is a spectrahedral cone def⇐⇒ there exists a
linear subspace L ⊆ Sn such that K ∼= Sn+ ∩ L.
Lax Conjecture: Is every hyperbolicity cone isomorphic to a spectrahe-

dral cone (i.e., a slice of a positive semidefinite cone)?

1.1 Goals of this project

Study the convex geometric properties of hyperbolicity cones and spec-
trahedral cones.

2 Facial exposedness

Let K ⊆ Rn be a closed convex cone. We have the following definitions.
�K is amenable [4] def⇐⇒ for every face F � K there is κ > 0 such that

dist (x,F) ≤ κdist (x,K), ∀x ∈ spanF .

�K is facially exposed def⇐⇒ for every face F � K, there exists a sup-
porting hyperplane H of K such that F = K ∩H.
Amenability is a strictly stronger property than facial exposedness be-

cause every amenable cone is facially exposed and there are examples of facial
exposed cones that are not amenable.
Some new results:

� Every spectrahedral cone is amenable. [6]

� Every hyperbolicity cone is amenable. [5]

3 Rank-one generated hyperbolicity cones

Given p : Rn → R a hyperbolicity polynomial we define rank (x) as the
number of nonzero eigenvalues of x . That is,

rank (x) = number of nonzero roots of t 7→ p(x − te).

From now, we suppose that Λ+(p, e) is regular (i.e., pointed and full-
dimensional).

Λ+(p, e) is rank-one generated (ROG) [3]
def⇐⇒ every extreme ray

of Λ+(p, e) is generated by a rank 1 element.
Examples: all symmetric cones and all spectrahedral cones whose extreme

rays correspond to rank 1 matrices.

4 Automorphisms of ROG hyperbolicity cones

and their derivative relaxations

For simplicity, we denote Λ+(p, e) by Λ+.

Renegar’s derivative relaxations: The following characterization holds

Λ+ = {x ∈ Rn | p(x) ≥ 0, D1ep(x) ≥ 0, . . . , Dd−1e p(x) ≥ 0}.

The m-th order derivative relaxation of Λ+ is

Λ
(m)
+ = {x ∈ Rn | Dme p(x) ≥ 0, . . . , Dd−1e p(x) ≥ 0}.

We have the following inclusions.

Λ+ = Λ
(0)
+ ⊆ Λ

(1)
+ ⊆ · · · ⊆ Λ

(d−1)
+

4.1 New results on automorphisms of ROG hyperbol-

icity cones

Theorem 4.1 ([3]). Suppose that Λ+ is regular and ROG. For 1 ≤ k ≤
deg p − 3 we have

Aut(Λ
(k)
+ ) = {A ∈ Aut(Λ+) | A(R+e) = R+e}.

Theorem 4.2 ([3]). For n ≥ 4 and k with 1 ≤ k ≤ n − 3, we have

Aut(Rn,(k)+ ) = {αP | α > 0, P is a permutation matrix}
Aut(Sn,(k)+ ) = {αLQ | α > 0, Q is a n × n orthogonal matrix},

where LQ : Sn → Sn is the map such that LQ(X) = QXQT holds for every
X ∈ Sn.

参考文献
[1] L. Gårding. An inequality for hyperbolic polynomials. Journal of Mathematics and Mechanics, 8(6):957–965,

1959.
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