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Ensemble-based data assimilation method for count data
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Variational data assimilation with count data

We denote the system state at time 7; as x; € R4 and the observation
obtained from x; as y, € R”. The temporal evolution of the state given the
numerical simulation model 1s written as

X = fr(xi-1) (1)
fork=1,..., K.
We consider cases where each element of an observation vector y, follows a

Poisson distribution and derive an ensemble-based variational method for
such cases. The likelithood of x; is

Pt = [ exp i hg (v, ©)

where y;; denotes the j-th element of the vector y , and the function /y;

provides a prediction ofyy; from xy.

We assume that all the elements of the state vector x; are non-negative and
that the mequality /% (x;) > 0 1is satisfied for each ;. To ensure that each
elementxo, (£ =1,...,d) 1s positive, we representxg as follows

¢r = log xp.

Combining &, for all £ into a vector &, the posterior distribution of & is
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The log posterior density becomes

1 — 3 —
logp(Sly1x) = _5 [5_ éb}Tpgl [5_ é:b}

K n (3)
+ > Y [y loghyi (xi) = logyyi ! = hyg (x )] + const.
k=1 j=I

When we define the following composite function:

2k (S) = hgge frofp—1° o f1°e(S) = hi(xy)), (4)

where e denotes a d-dimensional function which satisfies

exp(c1)
e@=( = )
exp(cq)
To maximise logp(&|y ;¢ ), we minimise the following objective function:

1 — —
Jp(S) = > & - fb}TPgl &= &| + Z[logykj! + 245 (€) = yij logzy; (S)].
k.
(5)

Approximation with an ensemble

We approximate the objective function Jp using a result of ensemble

simulation. We generate N different values for ¢, {52)» e é‘,(fqv)} to satisty

1L
2 50 = S (6)
i=1

where E:m—l 1s the (m — 1)-th estimate. We introduce a d X N matrix:

By = (é:;(qi)_%m—l éi(vjiv)_%m—l)’

and represent ¢ as follows:

N

é::é:m—l_i_Emwm- (7)

We obtain zy; (f,(fq)) fori =1,..., N for each time step £ by running the
ensemble simulation. Defining an N -dimensional row vector ¢ ,Em as

Chm = (2 ED 25 Eun) o 2y @)= 2y &)
we can approximate z; (¢) as

25 (&) = 25 (&) + Lh W (8)
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Ensemble-based variational method for count data

The objective function Jp 1n Eq. (5) can thus be approximated as
1 /- - T . /A - _
JP(f) ~ 5 (é:m—l_ é:b—i_ dmwm) Pgl (é:m—l B é:b_l_ i=‘mwm)
T Z [log)’kj L+ 24 (6p) T fzg,m W — yi log (ij (Sp) + é'lg',m Wm)} :

kj

We minimise an objective function with a regularisation term:

0.2

jP(é) — me;qum
e P — o103 P -
+ 5 (é:m—l_ §b+ =‘mwm> Pg (é:m—l_ §b+ h='mwm)
" Z logyyi !+ 2k () + Ly Wm — Vi 10g (21 (Ep) + CijmWm) ] -
k,j
9)
At the m -th 1teration, the optimal w,, 1s obtained by minimisingf p as
follows:
1]
A 2 =T 1p— 1= Vkj T
W, = o, Iy + @mPg =, T Z [ kaj,m ij,m]
o L1715 (€p)
| (10)
« [=1p.! {%m_ _ é_:b} n [é"k-m _ VK é”k-m] ,
( ° ! %: s zii (&)
The m-the estimate of & 1s obtained as
Ep = Ept T B W1 (11)
and therefore the estimate of x( at the m -th 1teration becomes
Rom = e(S,). (12)

Experiment with a one-dimensional fluid model

We consider the one-dimensional advection and diffusion equation:

op op 0°p

—U—+ v—s, 13
ot ox  ox? (13)
where p 1s the fluid density, # indicates the time, x indicates the location of

one-dimensional space, u 1s the velocity, and v 1s the diffucion coefficient.
» The range of x 1s 0< x < 200 and a periodic boundary condition
p(t,x =200)= p(¢t,x =0) 1s imposed for any . We also assume u = 2
and v = 2.
» The resolution is Ax = 2 in space and Az = 0.2 in time.
» The Lax—Wendroff scheme 1s used for calculating the temporal evolution.

» The observations were obtained with a spatial resolution of 2Ax and a
time interval of 20A¢ until # = 100A ¢ = 20. Each of the data follows the
Poisson distribution with a mean of p(¢ x ).

The log likelihood of the estimate at each iteration. The
solid line shows the result with the ensemble size N = 100
and the dotted line shows the result with N = 50.
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The estimated after 6 iterations. The estimated after 10 iterations.

The solid black line indicates the result with N = 100 and the dotted black line indicates the result with
N =50. The true initial state is shown with the solid gray line.

See Nakano (2003), Proc. Inst. Statist. Math., v. 70, p. 235 (in Japanese) for detail.
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