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1 Abstract

An infectious disease spreads over a single population or community and
also across multiple and heterogeneous communities. Moreover, its trans-
missibility varies over time because of several factors, such as seasonality
and epidemic control, resulting in strongly nonstationary behavior. In con-
ventional methods for assessing transmissibility trends or changes, univariate
time-varying reproduction numbers are calculated without considering the
transmission across multiple communities. In this study, we propose a mul-
tivariate count time-series model for epidemics. We propose a statistical
method for estimating the transmission of infections and time-varying repro-
ductive numbers across multiple communities simultaneously from multivari-
ate time series of case counts. We use our method on COVID-19 incidence
data to reveal spatiotemporal differences in the epidemic process.

2 Methods

Multivariate-count time series model

We consider an infection process that spreads over D nodes, where each
node represents a group of individuals. Let ni t be the number of newly re-
ported cases in (i , t), where (i , t) denotes node i at time t. The rate of
new cases at (i , t) is given by

λi t =

D∑
j=1

ai j

t−1∑
τ=1

Rj,t−τϕτnj,t−τ , (1)

where Rj,t−τ denotes the effective reproduction number at (j, t − τ) and
ai j(≥ 0) represents the transmission ratio from node j to node i satisfying∑D
i=1 ai j = 1. Based on the history of previously reported cases,

N1:t−1 ≡ {njs | j = 1, . . . , D; s = 1, . . . , t − 1}, (2)

the count ni t is assumed to follow a Poisson distribution with the rate Eq (1):

P (ni t |N1:t−1) = Poisson(λi t) ≡
λni ti t
ni t!

e−λi t. (3)

The multivariate count time series model comprises the two components in
Eqs (1) and (3).

Latent variable representing secondary infection in trans-

mission chain

Let us introduce the latent variable y jsi t , which represents the number of sec-
ondary cases at (i , t) infected by the primary cases at (j, s) (s < t). As
the total number of new cases at (i , t) is given by ni t , the following equality
holds:

D∑
j=1

t−1∑
s=1

y jsi t = ni t. (4)

Assuming conditional independence between the transmission events y jsi t and

y j
′s ′

i t for (j, s) ̸= (j
′, s ′) and given N1:t−1. The superposition principle can

be applied to the Poisson distribution (3), leading to a Poisson distribution

for counts y jsi t with the rate given by ψ
js
i t = ai jRjsϕt−snjs . Thus, given the

sum of independent Poisson random variables ni t , the conditional distribu-

tion of each element of the Poisson vector Yi t ≡ {y
js
i t | j = 1, . . . , D; s =

1, . . . , t − 1} is multinomially distributed with count probabilities scaled by
the sum of the individual rates:

P (Yi t |ni t, N1:t−1) =
ni t!∏D

j=1

∏t−1
s=1 y

js
i t !

D∏
j=1

t−1∏
s=1

(
ψjsi t
λi t

)y jsi t
. (5)

In particular, the conditional expectation of y jsi t , given ni t and N1:t−1, is

⟨y jsi t ⟩ ≡ E(y
js
i t |ni t, N1:t−1) =

ni tψ
js
i t

λi t
=

ni tai jRjsϕt−snjs∑D
k=1 aik

∑t−1
s=1Rksϕt−snks

,

(6)
from which posterior inferences can be made regarding secondary infections
from the reported incidences.

Parameter estimation

In this study, we focus on estimating the weighted adjacency matrix A = (ai j)
and time-varying reproduction number R = {Rjs} of each node from an
observed multivariate time series of incidence N1:T . To estimate these pa-
rameters, we consider the following penalized log-likelihood function:

L(A,R) =
D∑
i=1

T∑
t=1

logP (ni t |N1:t−1)− γ
D∑
j=1

T∑
s=2

|Rjs − Rj,s−1|p, (7)

where the choice of exponent p ∈ {1, 2} and hyperparameter γ ≥ 0 depend
on the sparsity or smoothness of the variation in the time-varying reproduc-
tion numbers. Using the latent variables representing secondary infection in
transmission chain, we develop an expectation maximization (EM) algorithm
to estimate A and R.

3 Results

We applied our method to actual data from the COVID-19 pandemic in Japan
(https://www.mhlw.go.jp/stf/covid-19/open-data.html). The
data consist of newly confirmed cases in D = 47 prefectures between Jan-
uary 16, 2020, and November 24, 2021, in which 1,720,441 cases were
reported. We applied our estimation method to new weekly cases to esti-
mate the parameters {Â, R̂}. Using the estimated parameters and Eq (6),
the conditional expectation of secondary infections, {⟨y jsi t ⟩}, was computed,
from which we made posterior inferences regarding the infections transmit-
ted across the prefectures. In particular, we computed the expected total
number of secondary infections in prefecture i that were transmitted from

prefecture j : ⟨y ji ⟩ ≡
∑T
t=1

∑t−1
s=1⟨y

js
i t ⟩.

Overall, it was estimated that 82% of the infected cases (
∑
i⟨y ii ⟩ =

1, 414, 104 cases) were infected within each prefecture (“intra-prefectural

infections”) and that 18% (
∑
i

∑
j ̸=i⟨y

j
i ⟩ = 306, 337 cases) of the infec-

tions were transmitted across prefectures (“inter-prefectural infections”).

Fig 1 shows a matrix visualization of (⟨y ji ⟩) (Fig 1a, heat map) and bar
graphs of the intra-prefectural infections ⟨y ii ⟩, in-degree ⟨yi⟩ ≡

∑
j ̸=i⟨y

j
i ⟩,

and out-degree ⟨y j⟩ ≡
∑
i ̸=j⟨y

j
i ⟩ in each prefecture (Fig 1b).
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図 1: Result of the actual data analysis.


