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1 Abstract

An Infectious disease spreads over a single population or community and
also across multiple and heterogeneous communities. Moreover, Its trans-
missibility varies over time because of several factors, such as seasonality
and epidemic control, resulting in strongly nonstationary behavior. In con-
ventional methods for assessing transmissibility trends or changes, univariate
time-varying reproduction numbers are calculated without considering the
transmission across multiple communities. In this study, we propose a mul-
tivariate count time-series model for epidemics. We propose a statistical
method for estimating the transmission of infections and time-varying repro-
ductive numbers across multiple communities simultaneously from multivari-
ate time series of case counts. We use our method on COVID-19 incidence
data to reveal spatiotemporal differences in the epidemic process.

2 Methods

Multivariate-count time series model

We consider an infection process that spreads over D nodes, where each
node represents a group of individuals. Let nj; be the number of newly re-
ported cases in (/, t), where (/, t) denotes node / at time t. The rate of
new cases at (/, t) is given by
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where R;;_, denotes the effective reproduction number at (j, t — 7) and
a;/(= 0) represents the transmission ratio from node j to node / satisfying

Rjt—r®rnj 1. (1)

Z,-Dzl ajj = 1. Based on the history of previously reported cases,
..... D;s=1,...,t—1}, (2)

the count n;; is assumed to follow a Poisson distribution with the rate Eq (1):
Nijt

P(n;j¢|Ni.t—1) = Poisson(\;;) = p 1Lle_>"'f. (3)
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The multivariate count time series model comprises the two components In
Egs (1) and (3).

Latent variable representing secondary infection in trans-
mission chain

Let us introduce the latent variable y/ff which represents the number of sec-
ondary cases at (/, t) infected by the primary cases at (J,s) (s < t). As
the total number of new cases at (/, t) is given by n;;, the following equality

holds:
D t—1
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Assuming conditional independence between the transmission events yljtS and
ylf;S/ for (j,s) # (', s") and given Ni.;—1. The superposition principle can
be applied to the Poisson distribution (3), leading to a Poisson distribution
for counts yj with the rate given by 1/)J = 3jjRjs®t—sn;s. Thus, given the
sum of mdependent Poisson random varlables n;¢, the conditional distribu-
tion of each element of the Poisson vector Yj; = {ylft5 lj=1,..., D;s =

L ..., t — 1} is multinomially distributed with count probabilities scaled by
the sum of the individual rates:

o D t-1 vl
P(Yitlnie, Nye—1) = : . ( ) - (5)
e e HJ 1H tljl_[l.sl_ll

KK BIFIREREAN 18R - AT LTHEAR

% LD-I_#&IEEH 7LPﬁ

2023 &£ 5 A 26 B SR 80BMEFR A—T7 > /N\DU X

In particular, the conditional expectation of y/ff given n;+ and Ny-t_1, 1S

) n; aR <N
0I%) = E(rSlnie, Nyp_y) = it MitdiRysbe-slls
>‘/f R aik LT Rustr—sis
(6)
from which posterior inferences can be made regarding secondary infections
from the reported incidences.

Parameter estimation

In this study, we focus on estimating the weighted adjacency matrix A = (a,-j)
and time-varying reproduction number R = {R;s} of each node from an
observed multivariate time series of incidence Ny.7-. To estimate these pa-
rameters, we consider the following penalized log-likelihood function:
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where the choice of exponent p € {1, 2} and hyperparameter v > 0 depend
on the sparsity or smoothness of the variation in the time-varying reproduc-
tion numbers. Using the latent variables representing secondary infection in
transmission chain, we develop an expectation maximization (EM) algorithm
to estimate A and R.

3 Results

We applied our method to actual data from the COVID-19 pandemic in Japan
(https://www.mhlw.go.jp/stf/covid-19/open-data.html). The
data consist of newly confirmed cases iIn D = 47 prefectures between Jan-
uary 16, 2020, and November 24, 2021, in which 1,720,441 cases were
reported. We applied our estimation method to new weekly cases to esti-
mate the parameters {A, R}. Using the estimated parameters and Eq (6),

the conditional expectation of secondary infections, {(y/f)} was computed,
from which we made posterior inferences regarding the infections transmit-
ted across the prefectures. In particular, we computed the expected total
number of secondary mfectlons |n prefecture / that were transmitted from

prefecture j: (y/) = S ny
Overall, it was estimated that 82% of the infected cases (> ;(y/) =
1,414,104 cases) were infected within each prefecture ( “intra-prefectural

infections”) and that 18% (Z,Zﬁé,(yf) = 306, 337 cases) of the infec-
tions were transmitted across prefectures (“inter-prefectural infections”).

Fig 1 shows a matrix visualization of ((yf)) (Fig 1a, heat map) and bar

'), in-degree (y;) = 3~,:(v)).

graphs of the intra-prefectural infections (yl.
= Z,-#J-<y/> in each prefecture (Fig 1b).
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X| 1: Result of the actual data analysis.
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