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Motivations and Objectives

Difficulties in retrosynthetic prediction
Most machine learning models for retrosynthetic analysis build a direct 
transformation from a given product to its reactants. There are two 
drawbacks for the backward prediction approach.
• The unavailable molecules in the outcomes
• The low accuracy of backward prediction models

Experiments and Results

Task Model top-1 top-3 top-5 top-10

Backward

Similarity (Coley et al. 2017) 37.3 54.7 63.3 74.1

SCROP (Zheng et al. 2019) 43.7 60.0 65.2 68.7

Lin et al. 2019 43.1 64.6 71.8 78.7

Forward

Template-based (Coley et al. 2017) 71.8 86.7 90.8 94.6

WLDN (Jin et al. 2017) 79.6 87.7 89.2 -

Molecular Transformer (Schwaller
et al. 2019) 90.4 94.6 95.3 -

Bayesian retrosynthesis
The retrosynthetic analysis can be reduced to a combinatorial optimization task whose 
solution space is subject to the combinatorial complexity of all possible paires of 
purchasable reactants in the catalog. We address this issue within the framework of 
Bayesian inference and computation.

Bayes’	law	of	conditional	probability

The workflow consists of two steps
1.Predict the product of given reactants using an accurate model (forward prediction)
2.Invert the forward model to the backward model

Methods

Simple SMC

The difficulties in the simple SMC
1.The diversity of the solutions and the problem of particle impoverishment in SMC.
2.The cost of forward prediction.
We propose an surrogate-accelerated Bayesian retrosynthesis.
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Surrogate-accelerate SMC

Data and forward model
• Dataset: 50K single-step reactions (Schneider et al. 2016). 80% for training, 10% for 

validation, 10% for test.
• Solution space: all possible combinations of 600K reactants in USPTO dataset.
• Forward prediction model: Molecular Transformer (fine-tuned on the training and 

validation data). Top-1 accuracy 86.9%; top-5 accuracy 95.5%.

One-step retrosynthesis
• 100 randomly selected reactions from the test set
• 87 Molecular Transformer-predictable reactions
• 600,000 (p=1000, t=600) searches for each test case, aroud 0.0001% of the 

complete search space (3.6x1011)

Table 1: Performance of the surrogate-accelerated SMC

Table 2: Performance of various retrosynthesis prediction methods with or without the 
reaction-class labels

Multi-step retrosynthesis
• 11 two-step reactions generated by connecting two one-step reactions
• 10 valid reactions evaluated by expert chemists
• 2,000,000 (p=2000, t=1000) searches for each test case, around 10-11 of the 

complete search space (2.2x1017)

In 9 of the 11 reactions, the recorded synthetic routes were identified.

Figure 1: The recorded reaction 9.

Figure 2: Distribution of detected synthetic 
routes to the target product in reaction 9.

Figure 3: Five detected synthetic routes 
to the target product in reaction 9.


