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Glossary (informal)

‘Phylogenetic network’

v Generalisation of phylogenetic trees v Useful to represent...

The origin of 1. Noises in the data
all species
Data (dissimilarities)
Vertices of in-degree 2 é/
et oted are allowed! E > |/ &l \t‘
ancestors *‘ " H

2. Uncertainty in the histories
Incompatible data

0.1 0.9 ,A
: - IVE R
Present-day species él O

v Drawback: Flexible, but there are many NP-hard problems!

Glossary (informal)

‘Tree-based phylogenetic network (TBN)’

v" Subclass of phylogenetic networks [Francis & Steel, 2015]

v" Studied by many combinatorialists and theoretical computer scientists

/ Phylogenetic network l—\

—————————

* Too general (Many NP-hard problems)

/7
’ Tree-based R

!  Still biologically meaningful
phyler?—Fgﬁ)network ‘ “ * Mathematical / computational

|
: properties: not clear yet !
|

) Phylogenetic ]
\ tree /I * Too restrictive (Oversimplified model)

Abstract

® Goal of this study

To develop a framework for solving various important problems on TBNs

To derive many fast algorithms in a unified manner

® Results

Main theorem Algorithms for various problems

Decision/search 4= [inear time

Structural '
Counting €= |_inear time
characterisation : :
of TBNs | Enumeration . 4= Linear time de|ay
Optimisation = Linear time

S —

M. Hayamizu: ‘A structure theorem for tree-based phylogenetic networks’
Preprin ’
arXiv:1811.05849 [math.CO]

Notation & definitions

® Terminology
Graph / Network -+ All refer to finite, simple, directed acyclic graphs.
Foragraph G, V(G) : its vertex-set, V(G) : its arc-set
A graph with a set V of vertices and a set A of arcs is denoted by (V, 4).

For each vertex v of G

ind . # arcs of G
indege(v) := whose head is v

For each arc (directed edge) of G

tail(a) head(a)

—v —0

(u,v) a

# arcs of G ]

outdegg(v) := [ whose tail is v

A vertex v of a graph G is called a leaf of G if
(indeg;(v), outdegg(v)) = (1,0) holds.

A graph G is said to be binary if for each internal vertex v of G,
(indeg;(v), outdeg(v)) = (1,2) or (2,1) holds. & © &
A MQK Leaves

Notation & definitions

Notation & definitions

m Arc-induced subgraph
For a graph G, A’ € A(G) is said to induce the subgraph G[4] :=
(V(A"),A") of G, where V(A") denotes the set of all ends of the arcsin A”.
® Decomposition of a graph
Given a graph G and a partition {A;,..., A;} of A(G), the collection {G[A,],...,

G[A/]} of arc-induced subgraphs of G is called a decomposition of G.

GIA,] GIA,] G[A;]

/N

® X: a non-empty finite set {1,..., n}

m A rooted binar_y phylogenetic X-network
is defined to be a DAG that satisfies:

? v' 3! root [?or")‘) A v
N\ v each internal vertex is or
E/ﬁ;{%\fﬂ v' X = the set of leaves [%ééé&%j

A rooted binary phylogenetic X-tree is the special case when # NQK .

» For short...
T := a collection of all rooted binary phylogenetic X-trees
Ny := a collection of all rooted binary phylogenetic X-networks

Notation & definitions

® Tree-based phylogenetic network (TBN) [rrancis & steel, 2015]
Intuition: a phylogenetic tree with additional arcs
Definition: N € /N, is called a TBN if N can be obtained

by the following procedure:

1. Start with an arbitrary element of T

2. Subdivide each arc zero or more times

3. Place vertex-disjoint arcs between new vertices
4. Smooth all v with indeg(v)= outdeg(v) =1

m Equivalent definition 1, 2018

A subdivision tree of N is defined to be a spanning tree T of N

s.t. Tis a subdivision of some element of 7T,

N € N, is a TBN if N has one or more subdivision trees.
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Problem description
[Francis and Steel (2015)]

m @ Decision/search problem (francis & steel, 2015]
Given a rooted binary phylogenetic X-network N € N, find a subdivision
tree of N if N is a TBN, and report that ‘N is not a TBN’ otherwise.

Problem description

[Francis and Steel (2015)]

® Motivation
Biologist often wish to discover an underlying tree T of N;
however, such a tree T might not exist for some N.

(i.e., TBNs form a ‘proper’ subclass of Ny)

® Known results
3 a linear time algorithm for this decision/search problem
(* It can be formulated as the 2-SAT problem)

(~ Alternatively, from Hall’s marriage theorem [zhang, 2016])

® @ Counting problem
Given a rooted binary phylogenetic X-network N € N,
determine the number a(N) of subdivision trees of N.

Francis & Steel (2015) conjectured that counting a(N) ‘might be hard".
(because counting # of solutions of 2-SAT is #P-complete.)

m Motivation

a(N) may be useful to quantify the structural complexity of N.

Smallest a(N) Intermediate a(N) Large a(N)

Problem description

[Francis and Steel (2015)]

® ® Enumeration problem
Given a rooted binary phylogenetic X-network N € N,

list all subdivision trees T, ..., Ty of N.

® Motivation

Useful for uniform sampling of subdivision trees of N

m Known results

The number a(N) of solutions can be exponential in size of N

(but details are unclear)

Problem description
[H (2018)]

m @ Optimisation problem
Given a rooted binary phylogenetic X-network N € NNy associated with a
weighting function w: A(T) = R, find a subdivision tree T* of N that

maximises the value of f=,c nyw(a).

= Motivation
Estimation of the ‘most likely’ tree within the input N
w(a): probability of each arca € A(N)
f(T): the likelihood of a subdivision tree T

® Known results
Recall: the number a(N) of subdivision trees can be exponential.

(= Exhaustive search takes exponential time! Any efficient method?)

Useful result

[Francis & Steel (2015)]

Definition

Given a rooted binary phylogenetic X-network N and a subset S € A(N),

Sis called an admissible subset of A(N) if S satisfies the following conditions:
Condition @ indegy(v) = 1 V outdegy(u) =1 = S contains (u,v)
Condition @ head(a,) = head(a,) = S contains exactly one arc in {a;, a,}

Condition @ tail(ay) = tail(a,) = S contains at least one arc in {a;, a,}.

Theorem

Given a rooted binary phylogenetic X-network N and its (spanning) subtree T,

T is a subdivision tree of N if and only if A(T) is an admissible subset of A(N).

The collection of subdivision trees of N | bijection

T = { Tll "'IT(!(N)}

The family of admissible subsets of A(N)
A={A(T), ..., ATy }

Key ideas

Key ideas

m Def. (Maximal zig-zag trail)
A subgraph Z of N with m > 1 arcs is called a zig-zag trail in N if there
exists a permutation (aq, ..., a;y) of A(Z) such that foranyi € [1,m — 1],
either head(a;) = head(a; ) or tail(a;) = tail(a;,,) holds.

Z is maximal if Z is not a proper subgraph of another zig-zag trail in N.

Maximal -

m The four types of maximal zig-zag trails
[_N-fence M-fence
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® Decomposition lemma [H, 2018]
For any rooted binary phylogenetic X-network N, there exists a unigue

decomposition {Z, ..., Z;} of N s.t. each Z; is a maximal zig-zag trail in N.
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m Structural analogue of Francis & Steel's theorem
S € A(N) is an admissible subset of A(N) & V maximal zig-zag trail Z; in N,
SN A(Z,) is an admissible subset of A(Z)).

Main result

m Structure theorem for TBNs [H, 2018]
N : a rooted binary phylogenetic X-network
Z=(2Zy, .., Z): an (arbitrarily) ordered set of the maximal zig-zag trails of N.
Nisa TBN < No element Z;of Zis a W-fence.

Nisa TBN = The family of admissible subsets of A(N) is characterised by
the direct product of .#(Z;) , where

{¢(1oy™i’2y, ((01)™i’2y} if Z; is a crown;

F(Zi):={ {1 mi—1zyl i I.I ] if Z; is an N-fence;
{<LONP10)71) | p,q € Zs0,p+q = (m; —2)/2} if Z; is an M-fence.

There exist m; := |A(Z))|
admissible subsets. i

Summary

Corollaries Numerical example
Time Potential

® Quantifying the complexity of N by counting a (N)

m Algorithms [H, 2018]

Linear

a(N) =a(Zy) X * + + Xa(Z), where . ) ) ) . B Whether or not N is | [Francis & steel, 2015] | Checking whether
B Maximal zig-zag trail decomposition Decision/ tree-based (Proofbased on 25AT) | the data can be
if Z; isa W- ; =1 v ; _ . - [Zhang, 2016] :
0 le[ iIsa fence ‘/ # maXImal N fences. 21 Search [ ] |f N is tree_based, (Pr:](;?];lg;zetdhggrgil)l's eﬁp:alned tt)yi
1 if Zi is an N-fence; a=1 # maximal M-fences: 7 find a tree inside N [H, 2018] phylogenetic tree
a(Zi) =9 . . a=3 Q(N) = 7*6*5*4*3*2*1 = 5040 (Proo;based(fmastrudure + additional arcs
2 4 Zy s acroum; a=1 B Advantage of exact computation N: phylogenetic eorem or e
|A(Z;)|12 if Z; is an M-fence. * Compare the above number with a network Linear Quantifying the
trivial upper bound 221=2097152. Counting MW # of all possible trees (Pmofb[:;dzzllasslnmure structurz?l
= The counting problem can be solved in O(|A(N)|) time. B How complex is N? theorem for TBNs) complexity of N
* The above number is still smaller

(We can solve the decision/search problem simultaneously.) Linear-delay

than # of the rooted binary Enumeration W Set of all possible
phylogenetic X-trees, given by (Listing) trees

(2[X]-3)!11 =13*11*..*5*3*1
=135135. N: phylogenetic M Tree to maximise a

. twork Linear Estimating the
~ N is not complex enough to ne i jecti
(cover all possiblz evolutioiary Optimisation | w: associated prescribed objective [H, 2018] ‘best-fit’ tree

. Weighting (>0) Iznctllci)l?e{iho()d) (Proof via ?osrt;l;c'\t‘lsj)re theorem inside N
scenarios.) (e, probability) £,

[H, 2018] Uniform sampling

(Proof based on a structure of trees inside N

Similarly, the enumeration problem can be solved in O(k|A(N)|) time, il e

where k is the number of solutions we want to list.

Moreover, the optimisation problem can be solved in O(|A(N)]) time.

(*+ we can automatically get the global optima by gathering local optima.)

AFHEHBREEA W2 ATLARRE

=K TRR 22 PR The Institute of Statistical Mathematics




	スライド番号 1

