A note on risk evaluation in Markov decision processes

1 Introduction

We consider risk minimization problems for Markov decision processes. From
a standpoint of making the risk of random reward variable at each time as
small as possible, a risk measure i1s introduced using conditional value-at-risk
for random immediate reward variables in Markov decision processes, under
whose risk measure criteria the risk-optimal policies are characterized by the
optimality equations for the discounted or average case. As an application,

the mventory models are considered.

2 Preliminaries

Let I be a random income(or reward) variable on some probability space
(€2, B, P), and Fj(x) the distribution function of I, i.e., Fi(x) = P(I < x)(z €
R). We define the inverse function F; ' (p)(0 < p < 1) by F;'(p) = inf{x €
R|F(x) > p}. Then, the Conditional Value-at-Risk for a level v € (0,1) of
I, CVQR, (1), is defined (cf. [2]) by

CVQR,(I) =

— o, Fradp. (1)

A Markov decision process is a controlled dynamic system defined by a six-
tuple {5, A, {A(x)|x € A}, O, 7, v}, where Borel sets S and A are state and
action spaces, respectively, A(x) is non-empty Borel subset of A which denotes
the set of feasible actions when the system is in state x € S, Q € P(S|SA)
is the law of motion, 7 € B(SAS) is an immediate reward function and
v € P(S)is an initial state distribution. The sample space is the product space
() = (SA)> such that the projections X;, A; on the t—th factors .S, A describe
the state and the action at the t—th time of the process (t > 0). So, using
C'V@QR for the random reward variable 7( X;_1, A;_1, X;) at time ¢, a risk mea-

sure p(7|m) for the random reward stream {7(X;_1, A1, Xy) 1t =1,2,--+}

will be defined in the discounted or average case as follows.
(a) The discounted case(0 < 3 < 1).

L S BECVOR. (F(Xy 1, Ay, X H ). (2)

M=l

pps(T|m) =
(b) The average case.

pay(7|m) == lim supTZE CVAR,(T(Xy—1, Am1, Xo)|[Hi—1)]. (3)

T'— o0

Proposition([1]) For any m € II, ppg and p4y have the following (i)-(iv):

(1) (N:OHOtOHiCity) [t f‘l § fg with fl, fz - B(SAS), ﬂ(fl) Z ﬂ(fg)

(ii) (Translation invariance) For 7 € B(SAS) and ¢ € R =

p(r+c) = p(r) — c.

(iii) (Homogeneity) For 7 € B(SAS) and A > 0, p(Ar) = Ap(7).

(iv) (Convexity) For 71,79 € B(SAS) and 0 < X < 1, p(Ar; + (1 — A)ry) <
Ap(r1) + (1 = A)p(72),

(_007 OO)?

3 Risk-optimization

[n this section, using C'V @R for a random reward variable (1), we define a new
immediate reward function by which the theory of MDPs will be easily appli-
cable. Moreover, sufficient conditions are given for the existence ot discounted
or average risk optimal policies. For any 7 € B(SAS), the corresponding
immediate reward function r € B(SA) will be defined by

— [[-@.a.) = D7 Gla,a))

for each x € S and a € A.

Theorem 1([1]) [t holds that, for any 7 € II,
(i) pps(Flm) = 75 2 oﬁtE”[ (XA

(i) pav(F|m) = Hmsupy_o 7520 B (X, Ay)].

r(z,a) = DZ;(v]z,a)A

Q(dyl|x,a) (4)

3.1 The discounted case

Assumption A The following (i)-(iv) holds:
(i) A is compact and A(x) is closed for each z € A.

(ii) 7(x, a,y) € B(SAS) is continuous in (x,a,y) € SAS.
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(iii) Q(OU(y|x,a,7)|x,a) = 0 for each (z,a) € K and y € R, where
OU(y|lx,a,7)={z€ S| —7r(x,a,z) =y}.

(iv) Q(-|x,a) is strongly continuous in (x,a) € K, i.e., for any v € B(S),
Jv(y)Q(dy|z,a) is continuous in (x,a) € K.

Theorem 2([1]) Suppose that Assumption A holds. Then,

(i) The value function ppg is given by

pps(F) = [ hps(Flz)v(de), (5)

where hpg(7|-) € B(S) is a unique solution to the optimality equation of the
discounted case,

hps(7lz) _n&l{ (z,a) + B [ hps(Fly)Q(dylz,a)| for z € 8. (6)

(ii) The exists a measurable function f*: S — A with f*(x) € A(x) for each
r € S such that f*(x) attains the minimum in (6) and the stationary policy
1* 18 discount risk-optimal.

3.2 The average case

Assumption B There exists a number o € (0, 1) such that

SUD HQ(‘xv CL) — Q('|ZIZ’/, CL/)H < 2a, (7)
x,x'e€S a,a'eA
where || - || denotes the variation norm for signed measures.

Theorem 3([1]) Suppose that Assumptions A and B hold. Then, there
exists v € B(S) such that

A(dy|x, a } (8)

Moreover, there is an average risk-optimal stationary policy f* such that
f*(x) € A minimizes the right-hand side of (8).

pav(T) +v(z )—mm{ r(x,a +/

4 An application to inventory model

The state X; denotes the stock level at the beginning of period ¢ and action A,
is the quantity ordered (and immediate supplied) at the beginning of period t.
Putting the amount sold during period ¢, Y; = min{&,, X; + A}, the system
equation is given as follows.

Xt—l—lth_'_At_n:[Xt_i_At_ft]Jr (t:O,l,Q,) (9)

Q(-|x, a), for any Borel subset B of .S, becomes

— [1p{lz+a— 4] Yoly)dp (10

Also, the immediate reward 7 € B(S x A X §) is given as

'he transition probability
Q(B|x,a)

r(x,a,y) =plx+a—1y)—ca— h(x+a),

where p > 0 18 the unit sale price, ¢ > 0 the unit production cost and h > 0
unit holding cost.

Assumption C It holds that ¢ := [>° ¢(y)dy > 0.

Theorem 4([1]) Suppose that Assumption C holds. Then, for each of dis-
counted or average case, there exists an optimal stationary policy f*, whose
ordered amount f*(x) is

(11)

rf—ax Hax<axf
0 itx > x*

for some x* € R, where the critical number x* for each case is given from the
corresponding optimality equations (6) and (8).
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