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1 Introduction

We consider risk minimization problems for Markov decision processes. From

a standpoint of making the risk of random reward variable at each time as

small as possible, a risk measure is introduced using conditional value-at-risk

for random immediate reward variables in Markov decision processes, under

whose risk measure criteria the risk-optimal policies are characterized by the

optimality equations for the discounted or average case. As an application,

the inventory models are considered.

2 Preliminaries

Let I be a random income(or reward) variable on some probability space

(Ω,B, P ), and FI(x) the distribution function of I , i.e., FI(x) = P (I ≤ x)(x ∈
<). We define the inverse function F−1

I (p)(0 ≤ p ≤ 1) by F−1
I (p) = inf{x ∈

<|FI(x) ≥ p}. Then, the Conditional Value-at-Risk for a level γ ∈ (0, 1) of

I , CV @Rγ(I), is defined (cf. [2]) by

CV @Rγ(I) =
1

1− γ

∫ 1

1−γ
F−1
−I (p)dp. (1)

A Markov decision process is a controlled dynamic system defined by a six-

tuple {S, A, {A(x)|x ∈ A},Q, r̃, ν}, where Borel sets S and A are state and

action spaces, respectively, A(x) is non-empty Borel subset of A which denotes

the set of feasible actions when the system is in state x ∈ S,Q ∈ P(S|SA)

is the law of motion, r̃ ∈ B(SAS) is an immediate reward function and

ν ∈ P(S) is an initial state distribution. The sample space is the product space

Ω = (SA)∞ such that the projections Xt, ∆t on the t−th factors S, A describe

the state and the action at the t−th time of the process (t ≥ 0). So, using

CV @R for the random reward variable r̃(Xt−1, ∆t−1, Xt) at time t, a risk mea-

sure ρ(r̃|π) for the random reward stream {r̃(Xt−1, ∆t−1, Xt) : t = 1, 2, · · · }
will be defined in the discounted or average case as follows.

(a) The discounted case(0 < β < 1).

ρDS(r̃|π) :=
1

1− β

∞∑

t=1

βtEπ[CV @Rγ(r̃(Xt−1, ∆t−1, Xt)|Ht−1)]. (2)

(b) The average case.

ρAV (r̃|π) := lim sup
T→∞

1

T

T∑

t=1

Eπ[CV @Rγ(r̃(Xt−1, ∆t−1, Xt)|Ht−1)]. (3)

Proposition([1]) For any π ∈ Π, ρDS and ρAV have the following (i)-(iv):

(i) (Monotonicity) If r̃1 ≤ r̃2 with r̃1, r̃2 ∈ B(SAS), ρ(r̃1) ≥ ρ(r̃2).

(ii) (Translation invariance) For r̃ ∈ B(SAS) and c ∈ < = (−∞,∞),

ρ(r̃ + c) = ρ(r̃)− c.

(iii) (Homogeneity) For r̃ ∈ B(SAS) and λ > 0, ρ(λr̃) = λρ(r̃).

(iv) (Convexity) For r̃1, r̃2 ∈ B(SAS) and 0 ≤ λ ≤ 1, ρ(λr̃1 + (1 − λ)r̃2) ≤
λρ(r̃1) + (1− λ)ρ(r̃2).

3 Risk-optimization

In this section, using CV @R for a random reward variable (1), we define a new

immediate reward function by which the theory of MDPs will be easily appli-

cable. Moreover, sufficient conditions are given for the existence of discounted

or average risk optimal policies. For any r̃ ∈ B(SAS), the corresponding

immediate reward function r ∈ B(SA) will be defined by

r(x, a) = D−1
−r̃(γ|x, a) +

1

1− γ

∫ [−r̃(x, a, y)−D−1
r̃ (γ|x, a)

]+Q(dy|x, a) (4)

for each x ∈ S and a ∈ A.

Theorem 1([1]) It holds that, for any π ∈ Π,

(i) ρDS(r̃|π) = 1
1−β

∑∞
t=0 βtEπ[r(Xt, ∆t)],

(ii) ρAV (r̃|π) = lim supT→∞
1
T

∑T−1
t=0 Eπ[r(Xt, ∆t)].

3.1 The discounted case

Assumption A The following (i)-(iv) holds:

(i) A is compact and A(x) is closed for each x ∈ A.

(ii) r̃(x, a, y) ∈ B(SAS) is continuous in (x, a, y) ∈ SAS.

(iii) Q(∂
⋃
(y|x, a, r̃)|x, a) = 0 for each (x, a) ∈ K and y ∈ <, where

∂
⋃
(y|x, a, r̃) = {z ∈ S| − r̃(x, a, z) = y}.

(iv) Q(·|x, a) is strongly continuous in (x, a) ∈ K, i.e., for any v ∈ B(S),
∫
v(y)Q(dy|x, a) is continuous in (x, a) ∈ K.

Theorem 2([1]) Suppose that Assumption A holds. Then,

(i) The value function ρDS is given by

ρDS(r̃) =
∫

hDS(r̃|x)ν(dx), (5)

where hDS(r̃|·) ∈ B(S) is a unique solution to the optimality equation of the

discounted case,

hDS(r̃|x) = min
a∈A

{
r(x, a) + β

∫
hDS(r̃|y)Q(dy|x, a)

}
for x ∈ S. (6)

(ii) The exists a measurable function f ∗ : S → A with f ∗(x) ∈ A(x) for each

x ∈ S such that f ∗(x) attains the minimum in (6) and the stationary policy

f ∗ is discount risk-optimal.

3.2 The average case

Assumption B There exists a number α ∈ (0, 1) such that

sup
x,x′∈S,a,a′∈A

∥∥∥Q(·|x, a)−Q(·|x′, a′)
∥∥∥ ≤ 2α, (7)

where ‖ · ‖ denotes the variation norm for signed measures.

Theorem 3([1]) Suppose that Assumptions A and B hold. Then, there

exists v ∈ B(S) such that

ρAV (r̃) + v(x) = min
a∈A

{
r(x, a) +

∫
v(y)Q(dy|x, a)

}
. (8)

Moreover, there is an average risk-optimal stationary policy f ∗ such that

f ∗(x) ∈ A minimizes the right-hand side of (8).

4 An application to inventory model

The state Xt denotes the stock level at the beginning of period t and action ∆t

is the quantity ordered (and immediate supplied) at the beginning of period t.

Putting the amount sold during period t, Yt = min{ξt, Xt + ∆t}, the system

equation is given as follows.

Xt+1 = Xt + ∆t − Yt = [Xt + ∆t − ξt]
+ (t = 0, 1, 2, . . .). (9)

The transition probability Q(·|x, a), for any Borel subset B of S, becomes

Q(B|x, a) =
∫

1B{[x + a− y]+}φ(y)dµ. (10)

Also, the immediate reward r̃ ∈ B(S × A× S) is given as

r̃(x, a, y) = p(x + a− y)− ca− h(x + a),

where p > 0 is the unit sale price, c > 0 the unit production cost and h > 0

unit holding cost.

Assumption C It holds that δ :=
∫∞
c φ(y)dy > 0.

Theorem 4([1]) Suppose that Assumption C holds. Then, for each of dis-

counted or average case, there exists an optimal stationary policy f ∗, whose

ordered amount f ∗(x) is

f ∗(x) =




x∗ − x if x < x∗

0 if x ≥ x∗
(11)

for some x∗ ∈ <, where the critical number x∗ for each case is given from the

corresponding optimality equations (6) and (8).
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