No. 30

ARdock, an Auto-Regressive model analyzer

Makio Ishiguro"® | Hiroko Kato? and Hirotugu Akaike!)?)

1) The Institute of Statistical Mathematics
2) NTT Communication Science Laboratories
3) The Graduate University for Advanced Studies

Mathematical formulas for model fitting and interpretation of the linear
multivariate time series and system are collected. A model, E-MARTS
model is proposed for the purpose of system analysis. Model fitting
is performed by the least squares method via Householder transforma-
tion and the numerical maximization of the log likelihood whose cal-
culation is realized by applying the Kalman filtering technique. The
complete ARdock package is composed of this monograph and a source
file that contains all the necessary computational routines. This pack-
age is so designed that it can readily be used by the users interested
in analyzing their own data, and also serves as a bank of subroutines
for the general use by statistical model builders. The ARdock package
is distributed from ISMLIB of the Institute of Statistical Mathemat-
ics(http://www.ism.ac.jp/software/ismlib/soft.e.html).

COMPUTER SCIENCE MONOGRAPHS

A publication
of

The Institute of Statistical Mathematics

Contents

Subject Index

Introduction

AR model

2.1 AR model and Linear System
2.2 PAR model e
2.3 MARTS model
2.4 SAR model e
2.5 TAR model e
2.6 E-MARTS model

Experiments and Physical Interpretation

3.1 Simulation. e
3.2 Power Building Profile
3.3 Power Spectrum and Coherency L oo
3.4 Relative Power Contribution

3.5 TImpulse Response Function and Frequency Response Function
3.6 Step Response Function
3.7 Imteractive System Analysis
3.8 Causality Analysis L

Model Fitting and Information Criterion

4.1 Sequential Least Squares Procedure
4.2 Modeling of Variance-covariance Matrix oL
4.3 Use of the Kalman Filter
Implementation
5.1 Basic Principles
5.1.1 Operatingmode
5.1.2 Expected users
5.1.3 Language L e
5.1.4 Licencing policy e
5.2 Source Code
5.2.1 Distributed files
5.2.2 Design parameters L Lo e
5.2.3 Compilation
5.3 Subroutines e
5.3.1 Principal variables Lo o
5.3.2 Subroutine coding Lo
5.3.3 Annotated list of subroutines
54 Files oo
5.4.1 Timeseries datafile o
54.2 AR modelfile
5.4.3 Graphicsdata
544 QKEEPKEY file
5.4.5 E-MARTSfile

5.4.6 Tutorial message file L

© 00 00 I O B =

10
10
10
11
11
12
13
13
14

14
14
16
16

\]

|83 O a & »

User’s Manual

6.1 Prompt messages. e
6.2 Starting up e
6.3 Model Assembly
6.4 Model Fit
6.5 Interactive System Analysis
6.6 Keysave L e

Acknowledgment

Householder Transformation and Least Squares Method
BAYSEA

Kalman Filter

DALL

Optimal Control Design

Debugging Tool, Bug-Pack

41
41
41
47
49
50
o7

59

61

63

64

65

67

69

Subject Index

Subject

AIC of MAR model
AR model file
BAYSEA

causality

Cholesky decomposition
coherency
debugging
E-MARTS model
frequency response
graphics data
Householder transformation
interactive system analysis
impulse response
Kalman filter
key save option
least squares method
log likelihood
— of MAR model
— of a state space model
MAR model
MARTS model
masked AR model
missing observation
MODIFIER
numerical optimization
Open Market Licence
optimal control
PAR model
parallel computation
power building profile
power spectrum
random number
relative power contribution
SAR model
scaling factor
seasonal component
self comment function
simulation
state space representation
— of PAR model
— of MART'S model
step response
TAR model
time series data
trend component
tutorial message
variance covariance matrix
work space management

Definition Mention

16
39
64
15

11
12

10
13
40
62
14
13
65
63
17
18
14
21
66

18-19
68

11

12

12

12

24

14

38

17, 29

23
29

42, 47

44
18

15

11

16, 65

22, 25

10

16

18, 21, 24

11, 16, 29
13, 14
8, 11

11

11-12, 17
17

11

7,8, 11
42
12, 17
24

N.B. Numbers refer to the related pages.

subroutine

o)
tarmodel)
marfit)
mpi-pack)
31(pwevol)
pw$pX)

1
29
5

subnosx)
29(sarfit)
31(pwevol)

/\/\/\/\/\/—\/\/‘\/‘\/\/‘\r\

36(selfcom)
28(arsimu)

32(1lset)
30(marts)
7(arsimu)
(
(

\V)

31(tarmodel)
28(datard)

36(keysave)
27(subaic)
36(iw, nw)

3(rn01,rnor)

Example
49

40, 51

48

49

57

70

95
41

o1
95

43, 58

52, 53

22,25

46, 67, 70
54
54

49

48
23, 25, 42
56, 57

56
50
38, 39, 43

52
23

1 Introduction

Multivariate AR model(MAR model) is a compact package of information about the system
to which the model is fitted. The information is stored in the form of the coefficient matrices
and the variance covariance matrix of innovations. The physical meaning of these matrices are
difficult to grasp except for the models of order 1 or 2. However, by virtue of the linearity of
the AR model, which allows the use of the principle of superposition, we can obtain sufficient
quantitative knowledge about the system by finite number of purposefully designed experiments
or simulations.

We made ARdock package composed of (1) this monograph and (2) FORTRAN source code
file. There are two aims:

1. to offer a powerful tool of system analysis and
2. to supply a package of statistical softwares for general use by model builders.

The construction of this monograph is as follows. Equations and notations of the MAR
model and its relatives are collected in Section 2. Tools to study the physical nature of a MAR
model are collected in Section 3. Equations concerning the fitting of models of Section 2 are
given in Section 4. The implementation of the analytic computations explained in sections 2
through 4 as a FORTRAN program is detailed in Section 5. Section 6 is the user’s manual of
ARdock where examples of application are included.

2 AR model
2.1 AR model and Linear System
Let us consider a linear system of the K variables (z14, oy, ..., k) driven by a colored noise
U = (Ug, Uty - -+ 5 Upt):
M/
(1) Tt = Z Z AkjmTj(t—m) T Ukt
j#Fkm=1
M/
(2) Ukt = Z Dkm Uk (t—m) + Ekts
m=1

where wuy; is the movement of the system originating in zj (¢j is a white noise). Let M = 2M .
With a convention that not explicitly defined variables are treated as zeros, from equations (1)
and (2) we have

M M m—1
Tt — O bkmTh(—m) = D [Z {ak:jm -y bknakj(m—n)} Zj(t—m)| + Ekt-
m=1 j#k Lm=1 n=1
Defining
Akkm = bim
3 m—1
() Akjm = Okjm — Z bknakj(mfn)
n=1
we have an AR model:
M K
(4) Tkt = Z Z Akjmxj(tfm) + Ekt;
m=1j=1
or
M
(5) Ty = Z AmTt—m + €1,

m=1

in matrix notation, where x; = (x14, T2, ..., 2x¢)’ . We define a general Gaussian AR model by
(5) with the assumption that

(6) e, ~N(0,%).
This model has

(7) MEK? + (K +1)K/2.
parameters:

(8) {ZaAlaA%"'vAM}-

The reasoning could be the other way around. We can start from the AR model (4). It is
equivalent to

M M
9) Tht = Y AkkmTh(t—m) = D [Z Akjm®j(t—m)

m=1 j#k Lm=1

+5kt'

Define the noise series {uy; } generated from ey, by the feedback loop by

M
(10) Ukt = Y AkkmUk(t—m) + Ekt

m=1

and, assuming the invertibility, express it in the moving average form
(11) Ukt = €kt — Z AkkmEk(t—m)-

By formally applying the moving average operation to the both sides of (9), we have

M 00
Tt = Z Z Akjm < Lj(t—m) Z Akkn® j(t—n— m)) + Ukt
n=1

Jj#Fkm=1
M oo
= Z { Z Ak]mx](t m) Z Z Ak]makknx (t—n— m)} + U
i#k m=1n=1
M oo 00
= Z { Z AkjmT;j(t—m) — Z Z Akj(s—n)akknﬂﬂj(t—s)} + Ut
];ﬁk m=1 n=1s=2
= > {Akﬂx]’(tn +y <Akjs -y akknAkj(sn)> ﬂﬁj(ts)} + upt
J#£k 5=2 n=1
= Z Z AkjsTj(t—s) T Ukt,
Jj#k s=1
where
agj1 = Agj1
12 J J -
() { Qkjs = Akjs - Zn:l akknAkj(s—n)

Using the relations between ayj, and Ay;, analogous to that between uy; and €, expressed by
equations (11) and (10), we can rewrite the second equation of (12) in the moving average form
to the auto-regressive form to get

agj1 = Arj1

13 m—1
(13) Akjm = Z Akkmakj(mfn) + Aijm (m=2,...)

n=1

Egs. (3) and (13) imply the equivalence relation:

(14) agim =0 (m=1,2,...) <= Ajm=0 (m=12,...).

2.2 PAR model

There are cases where each variable represents a stationary variation around a deterministic
trend. A model for this type of data is defined by

P

P B K M
zt_zbiptp:ZZAijm(xj(t m) Z +5zt (i:1,...,K).
p=0

j=1m=1 p=0

or
thp ZA Ty — Zb (t —m)P) + &

This is equivalent to

M P
(15) Ty =Y Ap®im+ Y byt + &,
m=1 p=0
if b, = (b1p, b2p,--.,brp) (p =0,1,..., P) are suitably chosen. The number of free parameters
in this model is
(16) (P+ 1)K + MK* 4 (K +1)K/2.

We will call this a Polynomial trend AR(PAR) model. If P = 2, the equivalence

M
ry = b0+b1t+ ZAm(iBt,m—bo—bl(t—m))—FEt

m=1
_ _ 5 M
= Bobo + Boblt — Blbl + Z Amil:tfm + &
m=1

M
= by +bit+ Z AmTi_m + &

m=1
holds, where we assumed
M
B, =— Z mPA,,.
m=0

If By is not singular, the transformation from {bg, b;} to {50, 51} is given by
b, = By 'by
by = By '(by + Biby).
[State space representation| A state space representation of the PAR model (15) is given
by

(17) ry — (I’Zt,

_ [Fx Fxr
v= (0 Fr)
where Fx is a K M x KM matrix, Fxr isa KM x K (P+1) matrix and Fris a K(P+1)x K (P+1)

matrix. An ordinary MAR case is obtained by formally setting P = —1. If, for example, P =1
and K = 2,

{Zt = ‘I’Zt71+r€t

1 0 0 0
A17 A27 e AM 2 -1 0 0
7 o ... 0O 00 1 0 L o0 0 o
0. .. I 0 : 00 1 0

(0]
r=| .|, &=(1,0,0,...,0),

(0]

and
th = (thamzllv e 7mglM+17 Q1ts Q1(t—1)5 G2t 92(t—1))-

2.3 MARTS model
Suppose that K-dimensional time series y,, = (Y1n, - - -, Yxn)’ (n =1,...,N) has the structure
(18) Yn=Tn + 1ty + 8p+ 10,

where x,,t,, and s, represent the AR, trend and seasonal component, respectively, and 7,
represents the observation noise. Each element of the trend component ¢, = (t1,,ton, ..., t Kn)T
is assumed to satisfy the stochastic difference equation

(19) Ay = & (k=1,...,Kn=1,...,N),
Sn = (flnuélna cee 7€Kn)T ~ N(Ov ET)v
2
T)
g
ET _ T2
J%k:

where At, = t, — t,—1. {&,} is a white noise sequence. The length of the period seasonal

component of the k-th channel {sg1,sk2, ..., Sk} is denoted by Ly and it is assumed that
Lip—1
(20) > Skmem)y = Men (k=1,...,Kn=1,....N),
m=0
n, = (nlnvnQTLv"'vnKn)TNN(()?ES)a
0?5’1)
o
ES _ S2
o2,

For quarterly time series Ly = 4. For series without seasonal variation we assign L; = 1 and
0%, = 0. {n,} is a white noise sequence. We also assume that observation noise {r,} is a white
noise sequence: 7, ~ N(0,Xg).

oh
Y=
T
We call this model MARTS(Multivariate AR around Trend and Seasonal component) model.

This model is a multivariate version of the DECOMP model of Kitagawa(1981).
Define

T __ T T T
Zn = (wn7mn—17"'7mn—M—|—1at1mt1(n—1)a~'7
tl(n—d)7 tgn, e 7tK(n—d)7 Slny .- - 781(n—L1+2)7 SOy .oy SK(n—LK+2))

and

Ug = (557557n£)7 EV:E{UHU?J}

then suitably defining matrices ¥, I' and @, a state space representation:

zn, = VYz,_1+Tv
21 n n n
() { Yn = Pzpt+ry
is obtained. The parameter of this model is
(22) 0 = Independent elements in {¥7,¥g, X g, 20,2, A1,..., Ay}

U, &, I' and Xy are

Fx 0 Gx by 0
U = FT N (I):(Hx,HT,Hs), I'= GT and EV: ET
0 Fg Gg 0 Yg

IfK=2M=2,d=2and L; = Ly = 4, for example,

2 1 0
_ Ay Az 1 o0
0
-1 -1 -1
1 0 0 0
0 1 0
Fs = 1 -1 -1 |’
0 1 0 0
0 1 0
10
10 10 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0
1000 1000 100000
HX_(0100)’HT_<0010>’H5_<000100>‘

2.4 SAR model

To investigate the causality relation between variables, we use a Subset AR(SAR) model. The
SAR model specified by the index matriz S is defined by:

M
(23) Ty = Z Z AigmTj—m) e (i=1,...,K),
{jlSig=1) m=1

where S is a K x K matrix of indicators each element takes the value 0 or 1. For a given S the
number of free parameter of the model is

(24) MY S+ (K+1)K/2.
i.j
2.5 TAR model

To introduce another physically meaningful structure to AR model, let us start from an ARX (
AR with exogenous variables) model

M M
(25) Y = Z A%Jytfm + Z Agnwwtfm + Ctu
m=1

m=1

where y, is a K,-vector of controlled variables and w; is a K,-vector of control variables. If
the task of stabilizing the system is posed, and if some effort is to be payed to avoid too abrupt
motion in control, then the problem can be formalized as one to minimize the cost:

N
(26) J = FE {Z YUy + wl Rewe + (Y — y) US (Y1 — 1)
=1

+ (wy — wi_1) T RS (wy — 'wtfl)})

where we assume that

Ul 0
U = 7U=r1
0 UK,
U+ 0
Ry = TR=1"
0 UK
u 0
Up = Ut =1
0 u[A(y
A
U 0
R} = r'R% =1 o :
0 u%

K = Ky + K,,. The optimal control for this cost is easily obtained(see Appendix E). Under this
control the dynamics of the whole system is described by

M
v) Ay 4w\ yem ¢
(27) (Jt)‘Z(A%y A%w><wim>+<ait)'

m=1

Replace the noise Gi{, with &, independent of (,, then we get the Teleological AR(TAR)
model(Ishiguro (1998))

M
Ye | _ Ay ARY Yi—m ¢
> (we) - mz::1 (AnlARY wiem)\ &
derived from the ARX model(25) and cost(26).
The parameter set of TAR model is
(29) {rout, . ug,ud, o uR P U{AY AV m =1, ., MY U{S,, 5}

Since we have to set a constraint, say u; = 1, and X (= E{¢,¢]}) and B, (= E{&&]}) are
symmetric matrices, the number of free parameters of this model is

2X K+ Ky x K x M+ (Ky+1)K,/2+ (Ky + 1)K,/2.

If TAR model is successfully fitted to given time series data, parameters 7,U, R,U® and R*
will reveal the teleological nature or the subsystem which generates w.

2.6 E-MARTS model

MARTS, SAR and TAR are not necessarily mutually exclusive. It is easy to think a TAR model
whose ARX part has SAR structure. The AR component of the MARTS model could be a TAR
model whose ARX part has an SAR structure. This consideration leads to the general model

(30) Yy, = Tn +q, + Ty,

where

e the dynamic component x,, is either of

MAR
MAR N TAR
SAR
SAR N TAR

e the mean component g, is either of

t, + s, where t,, is smoothly varying trend and s, is the seasonal component
polynomial trend

e the observation error component 7,, is either of

a white noise sequence
none

The specification of the mean component and the error component could be channel wise. We
call (30) the E-MARTS model, ‘E’ stands for ‘Extended’.
3 Experiments and Physical Interpretation

3.1 Simulation

Given the Cholesky decomposition, or the square root, L of the matrix X

ly 0 - 0
(31) S =LLT, L= lfl lfz O ,
ZI'(I l1;2 ZK'K
{&:} can be expressed in the form:
(32) er=Lwy wy~ N(0,1).

Using the matrix L, AR model (5) can be expressed in the form:
K M i—1

(33) Tit — Z Z Aijm$j(t7m) + Z lijwjt + liiwit (Z = 1, e ,K).
j=1m=1 j=1

This expression is useful for the simulation and parameter estimation.

3.2 Power Building Profile

The stability of AR model can be judged by observing the locations of the roots of the charac-
teristic equation:

M
(34) det [I -y Amzm] = 0.
m=1

If all roots are out of the unit circle then the AR model is stationary. Another way of judging
the stationarity is to compute power building profile

(35) {(PE(t);k=1,2,...,K t=0,1,2...}

by the recursion:
(36) PB(t)=vPB(t - 19! 4+ Txr? (t=1,2,...),

where ¥ and I' are those of eq. (17) with the polynomial order P = —1 and

O ... O
(37) PPO)=| :

O ... O
The system is stationary iff
(38) PE (o) = tlim PE(t) < 00

for all k.

3.3 Power Spectrum and Coherency

For a stationary AR model (5) the frequency response from {e} to {x} is given by

(39) F(f)=1[I- f Ape”PTAHTTL (0 < f < 1/2A8)
m=1
then, the power and cross spectrum density matrix of {x;} is given by
(40) P(f) = AtF(f)SF(f) (0 < f <1/2At),
where At is the sampling interval and “*’ denotes the conjugate transpose. If P& (c0) < oo for
all k < K,
(41) PL(o0) = [Pudf = Var{ans)

holds. A natural scaling factor for each variable is defined by

(42) o=/ PE(c0) (k=1,2,...,K)

The (simple) coherency between two variables at frequency f is defined by

| Py (f)I?
Py (f) Per(f)

This quantity is the square of correlation coefficient between two components at frequency f.

(43) v(f) =

3.4 Relative Power Contribution

Assume that > has the block diagonal structure

0 - 0
b
(44) 0o ,
SO
0 0 xb
specified by the parameter
(45) {6(1),0(2), ..., b(r)},
and
Ob(j—1)+1,b(k—1)+1> "5 Ob(j—1)+1,b(k)
Ob(5),b(k—1)+15 SR Ob(5),b(k)
Introduce the same partition to P(f) and F(f):
Ph(f) Ph(f) P (f)
Pb Pb :
py= | PHO) B b
: ’ P(rfl)r(f)

F(f) = b
: . . F(rfl)r(f)
Fa(f) - () FL()
then we have the expression
(47) P (f) = At Y Fp (/). Fpa (f) -
q=1

This means that power spectrum of the k-th variable is a sum of positive terms:

(48) Pui(f) = the part derived from X%,
+ the part derived from %5,
+ -+ - 4 the part derived from X, .

The relative power contribution from the p-th block to Py (f) is defined by

i b
(49) RPC,)(f) = the part derived from ¥,
By (f)

3.5 Impulse Response Function and Frequency Response Function

From (10),

0 (t<0) 0 (t < 0)
(50) Upt = (1) Ei;g; <:>5kt—{_Akkt (0<1)

where, we assume
(51) Apro = —1.

Thus the response of the system to the impulse input to k-th variable is calculated from (4) by:

0 (t<0,)
M K
AjimRikt—m) — Ak (08,5 =k)
(52) Ry = | 2o 2 Bt
M K
> Ajim Rik(t—m) (0<t,j#k)
m=11i=1

For the comparison of impulse responses, the normalized response defined by
~ O—k
(53) Rjke = — Rjpe
gj
is useful. o, and o; are scaling factors defined by eq.(42). Note that {Rjz;} is a dimensionless
quantity.
The response of the system(1) to the input

(54) Uy = efi2ﬂAtft

is given by

(55) Fjp(f)e= T80,

where

(56) Fa(f) = 3 Roplt)e 270, (0< f < 1/20)
t=0

Fjj, is called the frequency response from the k-th to the j-th variable. The normalized dimen-
sionless response is defined by

(57) Fi(f) = 22 Fji(f)-

9j

3.6 Step Response Function

The step input are generated from (10) by
0 (t<0)

0 (t<0) t
(58) Ukt = { < Ekt — _ A 0<t
mz::() kkm (=)

The response of the system to the step input to k-th variable and its normalized value are given
by

0 (t<0,)
M K ¢
SN AjimSikt—m) — >, Akem (0t 5 =k)
(59) Sjkt = m=11i=1 m=0 ’
M K
SN AjimSiki—m) (0<t,j#k)
m=1i=1
and
~ O'k,
(60) Skt = — Sikts
J ;7
respectively.

3.7 Interactive System Analysis

Above mentioned methods can be regarded as basically the same thing differ only in the choice
of the form of the input. They are summarized in Table 1.

Table 1. Test inputs to a linear system

method input u to see ...
simulation random noise(2) ?f "uhe‘model'reproduces real-
1stic time series
impulse response impulse function(50) time domain feature
step response step function(58) time domain feature

frequency response trigonometric function(54) frequency domain feature

The operation to mask the matrix A(= [A;;]) with mask C(= [c;;]) is defined by
(61) CNA= [Ciinj] .

When the coefficient matrices are masked by one and the same mask we call the model thus
obtained a masked AR model. All the masks we use are defined with ¢;; = 0 or 1. Application
of the methods in Table 1 to masked AR models is sometimes quite useful for the understanding
of the physical nature of a system.

[Note] Suitable form of graphical outputs are indispensable for correct understanding of the
system. There, the scaling factor (42) should be fixed at that derived from the original not-
masked AR model.

3.8 Causality Analysis

Eq.(14) implies that the existence/nonexistence of the causality relation between variables are
equivalent to nonzero/zero of off diagonal elements of coefficient matrices. Therefore, we can
check the existence/nonexistence of causality relations by evaluating the goodness of fit of SAR
models. Once the causality relation, for example, from j-th to i-th variable is detected, we can
find the nature of the relation by watching what happens when this relation is eliminated.

Feedback characteristic matriz with respect to variable k, C*, is defined as the matrix whose
(4,7)-th element is given by ij(oo), where

PE (t; AR model masked by N%)
PE (t; original AR model) '

(62) Cl(t) =

where N is defined as the mask such that the 7, j-th component is 0 and other components are
1. If ij(oo) > (<)1, the power of the k-th variable increases (decreases) when the path from
j-th to i-th variable is cut.

Note that there can be cases where P(f; AR model masked by N%) # P(f;original model)
and ij(oo) =1

4 Model Fitting and Information Criterion

Assume that we have K channel time series data of length N

(63) {emlk=1,2,... K,t=1,2,... N}

4.1 Sequential Least Squares Procedure

Log likelihood of the k-th model of eq. (33) when {wj; : j =1,2,...,k—1} are known and initial
values {zplk =1,2,...,K,t =1,2,..., Ny} are fixed is given by
N N 1
(64) G log 2m — — log lkzk 912 Z Lig — Z Z Azgmx t—m) + Z lz]wjt
20 5
0+1 j=1m=1

Let I = Ny + 1 and define a; by

(65) ar = (Agi1, Ara1s - Aricts Aprz, 5 Aoy s Agiars o Arer)

then its maximum log likelihood estimate is obtained by the minimization of

2
N
(66) > (S Ay + Z lw“’”)
t=1

j=1m=1
a
] I 11
Ik je—1
where
Tir-1, T1,01-2, -5 TKI-M, wy,r vy Wk-1),1 Tk,1
(X,Wk,l,:ck)z 961',1, 501,1.71, xK,ITMJrla W1,I1+1 w(k—'l),l-i-l 90k,‘1+1
T1,N-1, T1,N-2, TK,N—M, wi,N oty W(k-1),N LEk,N
(67)

The estimate of [is given by

1
(68) 2, = E{Minimum value of eq.(66)},

where N1 = N — Ny and the AIC of the model is given by
(69) AICE, = Ny log 27 + Nylog i3, + Ny 4+ 2(MK + k).

Wi is prepared by calculating

ay,
1 lk1
(70) wg = l_ T — (X> Wk‘—l) .)
kk :
k-1

and then we can repeat the minimization of (66) and computation of (70) for increased k until
k equals to K.
When this iterative procedure is finished, AIC of the whole model is given by

K
(71) AICy = > AICY,.
k=1

The relation between AR model parameter(8) and the estimate obtained by this sequential
method is

a ay - ag AT
iyl - Ik AT
(72) l22 k2 | = : = (A1, Ay, ..., Ay,)T,
: : AT,
IkK LT

[SAR model] It is easy to modify this procedure to fit SAR model. The only changes are to
replace Z]K:l in eq. (64) by > (vjlsy =1y and MK in (69 by Z]K:l Skj-

[PAR model] To fit PAR model, use

bro
br1

b
i — (B, X, Wie_1) | " ||
ag

Ikt

Ik k=1

instead of (66) where B is a Ny x (P + 1) matrix defined by

1, I, ..., P

1, I+1, ..., (I+1)*F
B=| .

1, N, ..., NP

Then the modified sequential method returns

(73) (b(]ubl?”'7bP7A17A27”'7AM7L)T

instead of (72).

[Missing Observation] One not quite efficient but easy way of fitting AR model to a set of
data where some observations are missing is to apply above procedure after removing all rows

containing missing values from the matrix (67). At least this gives a good initial guess for the
exact method explained in Appendix C.

4.2 Modeling of Variance-covariance Matrix

The log likelihood of the model (5,6) is

N M
(74) 0e) = Y logox(xi Y Anxim,%)
t=No+1 m=1
N K K
= - 12 log 27 — log det X
1 N M M
_5 Z (xt - Z Ammt—m)Tzil(wt - Z Ammt—m)
t=Nop+1 m=1 m=1

If {A,,} is fixed, the prediction error, or the residual sequence, and the maximum log likelihood
estimate of X are respectively given by

(75) re=x — > Apim (t=No+1,Ng+2,...,N)
and
o1 X
(76) Y=— Z Ty
L i=No+1

If the block diagonal structure(44) is assumed, the MLE of Elj’-j is given by

. 1 XN
(77) Y= 2 (MG-vene 1)) Tbotyene o To))
L t=No+1
and consequently
(78) AIC{b(1),b(2),...,b(r)}

T
= KNlog2m+ Ny) _logdet X, + N K
j=1

+2MK? + i(b(—b(j — 1)+ 1)(b(j) — b(j —1)).
j=1

When r =1 and b(1) = K, this AIC is equal to AICy; (71).

4.3 Use of the Kalman Filter

If a state space model is defined by (21) or (17) the distribution of Z,, = (z1,...,2,) and
Y,=(y,...,y,) given Z,, are

N
(Zn)0) = ¢p(z0|1o, Xo) H bp(zn| V2,1, TS TT)
. =
f(Yn’Znae) - H yn’(I)zerR)

Here, ¢p(-|p,) denotes the density function of the p-dimensional normal distribution N (u,),
and Yy = E{v,vl}. The dimension of the state vector z,, is denoted by p. From the marginal
distribution of Y,

f(Yn|0) = /f(Yn|Zn79)7T(Zn|0)dZm

defining f(y, Y 1,0) = [(Y]68)/ (Y 1]6), we get
N N
f(YN|0) = H f(yn|Ynfla 9) = H ¢K(yn|‘1}zn|n—17 (I)ann—l(I>T + ER)’

n=1 n=1

where z,,,_1 and V,,,_; are efficiently computed by Kalman filtering technique (cf. Appendix
C). The log likelihood of the model is calculated by

N
6(9) = Z log ¢K(yn‘\1}zn|n717 (I)Vn|n71(I)T + ZR)

n=1
If we assume initial data of length Ny are fixed, the log likelihood is given by

N

(79) 6(0) = Z log ¢K (yn|‘1}zn|n—17 (I)Vn|n—1q)T + ER)
n=Np+1

The maximum log likelihood estimate of parameter 6 is obtained numerically by maximizing
£(0).

5 Implementation

5.1 Basic Principles
5.1.1 Operating mode

ARdock is designed basically for interactive use, but its use in batch mode is also taken cared
well. A smart way of using ARdock is to run ARdock in the batch mode for model fitting, and
run it in the conversational mode for the system analysis.

5.1.2 Expected users

ARdock is designed anticipating three kind of users summarized in Table 2.

Table 2. Expected users of ARdock
category description
end-user those who are interested only in using ARdock in its distributed form
modifier those who are interested in modifying ARdock or re-using

subroutines of ARdock package for his/her own purpose
author the present authors ourselves

We distribute the source code some part of which can be meaningful only for the present authors.
This reduces readability of the code but it also reduces the liable discrepancy between the
distributed version and the authors’ private version.

5.1.3 Language

The code is written in FORTRANT7. There are parts coded so that parallel computation is
enabled. Message Passing Interface(MPI) is employed for the message passing. C preprocessor
directives are employed for user category dependent source code switching; file inclusion; and
macro substitution.

5.1.4 Licencing policy

We make public the ARdock source code under the open market licence policy proposed by the
Institute of Statistical Mathematics.

Open Market Licence for software(version:OML-SW-E-1996)

0. In the following, “Copyright_ OML notice” means “the copyright notice with a
statement saying that the said software is made public under this Open Market
Licence for software”.

1. On the condition that “Copyright_OML notice” and attached statements are
copied as they are, all or any portion of the said software can be copied or
redistributed.

2. Modification of the software is permitted, provided that the exact place of the
modification, the date and the name of the modifier are shown conspicuously.

3. It is forbidden to apply for a patent on the software which utilizes the said
software.

4. The said software is distributed without any warranty. The copyright holder
takes no responsibility for any damage caused by the use of the said software.

5. Any interactively controlled application made utilizing the said software has to
show “Copyright_OML notice” and attached statements conspicuously when it
is started up.

For the healthy development of software science, suitable form of the licencing is important.
We definitely would like to claim our copyright to our ARdock package. And we would like to
use our copyright to let all concerned people use ARdock source code freely under two conditions
that (1) our credit is properly referred and (2) statements attached to the copyright note saying
that the original ARdock source code is distributed from the specified site without charge are
kept as they are. We permit modification or redistribution of ARdock source code as far as
these two conditions are met. The redistribution may be with or without charge.

It might seem we are abandoning our right. It is not so. We are using our right in our way.
We do not mind if a person or organization who is informed that charge-free original ARdock
source code is available decides to get possibly-slightly-modified-version of ARdock from other
sources. In short, we guarantee that our charge-free original will be always in the open market.
Anybody can sell anything there if he/she can find a buyer.

We find the policy advocated by the ‘Open Source’ school people is very close to ours.

[Recommended form of reference/acknowledgment] When you are to publish software
xxxxx, which utilizes some subroutines of ARdock-package, here is an example of making refer-
ence to ARdock.

xxxxx Copyright, 20yy uuuuu

xxxxx utilizes subroutines of ARdock package, with here and there modifications.
The places of modifications are indicated in the code.

ARdock_package

Copyright_OML 1999 M. Ishiguro, H. Kato and H. Akaike

The source code of this package can be obtained from ISMLIB™M) of the Institute
of Statistical Mathematics without any charge. On the conditions that terms of
the OPEN MARKET LICENCE®) for software are observed and that the copyright
holder nor the Institute of Statistical Mathematics take no responsibility on any
result from the use, programs in the package can be used or modified freely. On the
condition that this note is attached as it is, this package can be redistributed.

(1) http://www.ism.ac.jp/software/ismlib/soft.e.html

(2) ftp://ftp.ism.ac.jp/pub/ISMLIB/OML/OML-SW-E-1996

5.2 Source Code
5.2.1 Distributed files
ARdock package summarized in Table 3 can be obtained from

ftp://ftp.ism.ac.jp/pub/ISMLIB/ARDOCK/

The location is also reachable through
http://www.ism.ac.jp/software/ismlib/soft.e.html

Table 3. ARdock package

file name contents

README Latest announcement

ardock.F main program and subroutines

ardock.env common setting

sample.dat sample data

ardock.dvi dvi file of this monograph

Makefile A prototype 'makefile’ for Unix environment

TUTORIAL. TXT See Section 5.4.6

5.2.2 Design parameters

Table 4a. Parameters of ardock. F(1)

parameter standard setting meaning

MAXN 2000 maximum data length

MAXCH 10 maximum number of channels

MAXF 80 frequency domain grid count

MAXLAG 20 maximum AR model order

MAXPAR 200 maximum number of free parameters of a model

(1) First fifteen lines of ardock.F

#define ARDOCKLINK
c#define MPIL
c#define MODIFIER "MODIFIER"

#define MAXN 2000
#tdefine MAXCH 10
MAXF 8

#define 0
#define MAXLAG 30
#define MAXPAR 200
#define IQUNIT 18
#define KEEPUNIT 99
#define TUTUNIT 98
#define BUGLOG 91
#define BUGMAP 92
Table 4b. Parameters in ardock.env(®)
parameter standard setting meaning
MPIPROCS 1@ number of parallel processors
NWORK 1000000 size of real type work area
IWORK 10000 size of integer type work area

(1) ardock.env

parameter (mpiprocs = 1)

dimension mPIL (MPIPROCS) , mPIB (MPIPROCS)

common /commpi/ iNFO , mYID , nPROCS , mPI , mPIL , mPIB
parameter (nwork=1000000,iwork=10000)

eal*8 wK (NWORK)

integer iWK (IWORK)

common /comwork/ wK , iWK , limflag

Work areas necessary for the execution of subroutines are taken in the common work areas
wk and iwk.

(2) If user’s computer is a parallel machine, set this value appropriately.

Table 4c. I/O unit number assignment

parameter standard setting related file(s)
IOUNIT 18 data file, AR file etc.
KEEPUNIT 99 QKEEP.KEY
TUTUNIT 98 TUTORIAL.TXT
BUGMAP 92 bug.map

BUGLOG 91 bug.log

Table 4d. user dependent parameter setting

parameter end-user modifier author
ARDOCKLINK define(define® define®
MPI (3) (3) define(®
MODIFIER — "MODIFIER”® "MODIFIER”
AUTHOR — — define(®)

(1) The first line of the distributed file is ‘#define ARDOCKLINK’. End-users should not
erase this line.

(2) Those parts marked by #ifdef ARDOCKLINK — #endif are to customize subroutines for
ARdock. To reuse those subroutines un-define the parameter ARDOCKLINK.

(3) The second line of the distributed file is ‘c#define MPT’. If user’s computer is a parallel
machine, activate this line as a directive by removing first ’c’. Those parts marked by
#ifdef MPI— #endif are for parallel computation.

(4) The third line of the distributed file is ‘c#define MODIFIER "MODIFIER”’. Activate
this line as a directive for C pre-processor by removing first 'c’. Those parts marked by
#ifdef MODIDIER — #endif are parts for modifiers. End-users have nothing to do with
those parts.

(5) Those parts marked by #ifdef AUTHOR — #endif are parts for the authors’ private
version. We are not obliged to give any explanation concerning the parts for ‘author’.

5.2.3 Compilation
The object file is obtained by the following procedure:

1. If necessary set appropriate values to parameters summarized in Tables 4a, 4b and 4c.
2. Define appropriate parameters for C pre-processor summarized in Table 4d.

3. Apply C pre-processor.

4. Compile by a FORTRAN compiler

So far, the test of ARdock is successfully done in environments summarized in the following
Table.

Table 5. Computation Environments

Hardware Operating System Compiler
HITACHI SR8000 HI-UX/MPP FORTRAN90
HP9000V2250 HP-UX 11.0 HP Fortran 90
IBM R/6000 SP AIX Version 4 AIX XL Fortran
SGI Origin 2000/4-DS-I IRIX Release 6.4 IP27 FORTRAN90
SPARCstation 5 Sun OS 4.1.4-JLE 1.1.4 g77 version(.5.23

PC-9801 nx/C MS-DOS 5.00A-H Microsoft FORTRAN Version 4.01

5.3 Subroutines

5.3.1 Principal variables

Table 6a. Principal Variables

variable mathematical expression comment

Ndata N length of data

Kch K number of channels

Lag M AR model order

Ar {A1, Ay, ..., Ay} AR coefficient matrix

Var Y =LLT variance covariance matrix

Parl (bo,b1,...,bp, A1, As, ... Ay, L) eq.(73)

Power P(f) and RPC power spectrum (40) and RPC(49)

Pbp PB(t) Power building profile (36)

Mask C in eq.(61)

El 14 log likelihood

Ib b block structure parameter (45)

Nblock T number of blocks

Scale o scaling factor (42)

Tscale At sampling interval (see Table 3)

Sqrvar L eq.(31)

Hh X X in eq.(86)

dATA x data matrix (see Table 3)

IAGOPT M AR model order

IAGMAX Ny initial data length in (64)

iNDEXM S SAR model index matrix in eq.(23)

mEAN P+1 0: mean component = trend + seasonal
70: mean component = polynomial of or-
der P

nSYS K, dimension of controlled sub-system(28)

IISTPE (L1,La,...,Lk) list of periodicity in (20)

Table 6b. Important Control Variables
variable comment

iNFO info level. See Section 6.2.
mYID processor-id of parallel computer.
nPROCS number of parallel processors.
mPI parallel processing flag.

0: no

1: yes

5.3.2 Subroutine coding
[Typical example]

subroutine sadjust (

i Abuse , Nch , Tauto , Lpe , Ndata , Lagmax , 0) (1)

ayY, Trend , Season , L0,)

o Trinit , Vtrend , Vseas) ... 0) (1)
implicit real*8 (a-h , o-z)

#include "ardock.env" . (2)

dimension Y (Ndata) , Trend (Ndata) , Season (Ndata) ,
* Trinit (2)

characterxl io , stio

data inisub /0/

sadjust (3)
Copyright_OML 1999 M. Ishiguro & H. Kato

The source code of this subroutine, as a part of the ARdock package,
can be obtained from ISMLIB(ftp://ftp.ism.ac.jp/pub/ISMLIB/)

of the Institutec of Statistical Mathematics without any charge.

On the conditions that terms of the OPEN MARKET LICENCE for software
(ftp://ftp.ism.ac.jp/pub/ISMLIB/0OML/OML-SW-E-1996) are observed and

that the copyright holder nor the Institue of Statistical Mathematics

OO0 0O00000n

[e]

9100

#ifdef

take no responsibility on any result from the use, this subroutine
can be used or modified freely. On the condition that this note is
attached as it is, this subroutine can be redistributed.

io 1
continue
if(io .eq.
nw0
iw0
end if
MODIFIER
myself = 9
if(iNFO .ge. myself .and. inisub .eq. 0)
call selfcom (’sadjust’, io , stio)
call showm3 (°I’,
’1.Adjusts one dimensional time series
> and seasonality by BAYSEA procedure

’2.Reserves work area and calls sadjuw.

’0’) then
nw (’}’ , nwO)
iw (P}, iw0)

.

then

data for trend’,
(Appendix B). 7,
?)

call showr (’I’,’Abuse’ , Abuse ,
call showi (’I’,’Nch’ , Nch ,
call showi (’I’,’Iauto’ , Iauto ,
call showi (°I’,’Lpe’ , Lpe ,
call showi (’I’,’Ndata’ , Ndata ,
call showi (°I’,’Lagmax’ , Lagmax ,
call showr (°I’,’Y’ , Y ,
call showr (’°0’,’Trinit’ , Trinit ,
(’0’,’Vtrend’ ,
(°0’,’Vseas’ ,

call showr Vtrend ,
selfend (myself , io

s
e v e e e e e e e
s

e e u w e v e w
[y
~—

call showr Vseas s
call , inisub)
end if

#endif

catch-

c
9200

(
(
(
(

2
3
4
)

)
)
)
)

’0’) then
nw (°{’ , 0)
iw C{° , 0O
9200

if(io
call
nwO
iw0
goto

end if

.ne.
nw

continue

io = 0’

i Ndata

lenh Ndata * (4 + 1)

lenh?2 Ndata * 2 + 1

mdcO Ndata * 2 * (4 *x 2 + 1)

call sadjuw (

Abuse , Nch , Tauto , Lpe , Ndata , Lagmax , mdcO ,
lenh , lenh?2 ,

Y , Trend , Season ,

Trinit , Vtrend , Vseas ,

wk (nw (ftrn’ , ia)) , wk (nw (fsea’ ,
wk (nw (’psds’ , ia)) ,

wk (nw (Cpsdt’ , ia)) ,

wk (nw (’irreg’ , ia)) ,

wk (nw CCf’ , ia))
wk (nw (’h2’ , lenh2
wk (nw (’h’ , lenh)
goto 9100

end

ia)) ,

S5 5 5 5500

(
(
(
(s
()) , wk (nw (°dc’ , mdc0)) ,
())

o

arguments: Usually, arguments are arranged in order of 'those whose values are not
changed in the routine’ then those whose values are set in the subroutine’. Variables
which have both characters come between. Within each category character variables come
first, then real variables and finally integer variable.

continuation mark: In ‘subroutine’ and ‘call’ sentences, arguments used as input only are
marked by ‘i’ in the 6-th column, those for output are by ‘o’. In some routine these role
are reversed depending on some control input. In that case marks ‘I’ and ‘0’ are used.
Those variables used for input and output at the same time are marked with ‘a’. Variables
used as work area in the subroutine are marked with ‘w’.

See Section 5.2.2

Copyright note

the execution of this routine is controled by the variable ’io’.
label:

— 9100: exit

— 9199: emergency stop or exit

9200: main part. No 'return’ nor ’stop’ sentences will be used here. ’goto 9100’ or go
to '9199 is used.

— 7xxx: No label headed by ’7’ will be used by the original author. They are for
modifiers’ use.
(6) Work space management: Work space for this job is kept, used and released.
(7) See Section 5.2.2, especially Table 4d.
(8) myself:

— > iNFO: Print outs ’self comment’ once at their first calls. See Section 6.2.
— = 0: Print outs ’self comment’ every time.
— = —9: Print outs ’self comment’, executes this routine once and stops.
(9) self comment function: ‘Self comment function’ is provided. According to user’s choice,

every subroutine prints out their own name and values of given arguments etc. Equation
or Section numbers referred to is of this monograph.

(10) variables:

— global constant: Capitalized.

variables in common area: Lower case initial followed by capital letters.
— subroutine argument: Initial letter is capitalized.

— local variable: lower case only.

(11) Actual computation is done by the subroutine ‘sadjuw’.

(*) spaces:

— Variables are insulated from other elements including delimiters like ‘(’, ¢, etc. by
spaces. This convention will help easy searches for variables.

— In every ’subroutine sentence’, the space after the word ’subroutine’ will be single.

— In every ’calling sentence’, the space after the word ’call’ will be single.

(*) comment: Comments in the source code are minimal. Efforts will be continued to improve
the readability of the code.

(*) if-block: Indented. The use of too big if-clause is avoided so that the structure of routine
is easy to see.

(*) do-loop: Indented.

(*) Parallel processing: Some subroutines are coded for parallel processing. To make these
subroutines ‘portable’; a flag system is devised. If there exists two subroutines for parallel
processing, and one calls the other, then the inside routine runs sequentially. Study use of
mpion and mpioff and the flag mPI in the common ‘commpi’ in ‘ardock.env’ file.

[Another example]

subroutine jdate ¢ L., &N
i Ymd2date ,
I Ymd , Time ,
0 Date , Atime ,
o Dayoweek)
implicit integer * 4 (a - z)
#include "ardock.env"
character*(*) Ymd2date
real * 8 Atime , ttime
dimension mon (13)
character*xl io , stio , viv , vov

O0O0O00000 0000

9100

#ifdef

#endif

9200

C
9201

data mon / 0,31,61,92,122,153,184,214,245,275,306,337,366 /
data inisub /0/

jdate
Copyright_OML 1999 M. Ishiguro & H. Kato
The source code of this subroutine, as a part of the ARdock package,
can be obtained from ISMLIB(ftp://ftp.ism.ac.jp/pub/ISMLIB/)
of the Institute of Statistical Mathematics without any charge.
On the conditions that terms of the OPEN MARKET LICENCE for software
(ftp://ftp.ism.ac.jp/pub/ISMLIB/0OML/OML-SW-E-1996) are observed and
that the copyright holder nor the Institute of Statistical Mathematics
take no responsibility on any result from the use, this subroutine
can be used or modified freely. On the condition that this note is
_atta???d as it is, this subroutine can be redistributed.
io =
continue
if(io .eq. ’0’) then
Dayoweek = mod (Date + 2 , 7)
if (Dayoweek .1lt. 0) Dayoweek = Dayoweek + 7
MODI%{ER
myself = 9
if(iNFO .ge. myself .and. inisub .eq. 0) then
call selfcom (’jdate’, io , stio)
call showm2 (’I’,
> Converts calendar data to the day count from’,
> Jun. 1. 1601.AD., and vice versa.’)

call showc (’I’,’Ymd2date’ , Ymd2date , 1,1, 1)
if(Ymd2date .eq. ’-->’) then
viv = ’1’
vov = ’0°
else
viv = ’0°
vov = I’
end if
call showi (viv,’Ymd’ , Ymd , 1,1, 1)
call showi (viv,’Time’ , Time , 1,1, 1)
call showi (vov,’Date’ , Date , 1,1, 1)
call showr (vov,’Atime’ , Atime , 1,1, 1)
call showi (’0’,’Dayoweek’ , Dayoweek , 1,1, 1)
call selfend (myself , io , inisub)
end if
if(io .ne. ’0’) then
goto 9200
end if
return
conzlnue
1f(Ymd2date .ne. ’-->’) goto 9201
year = Ymd / 10000
day = Ymd - year * 10000
month = day / 100
day = day - month * 100
hour = Time / 10000
second = Time - hour * 10000
minute = second / 1
second = second - mlnute * 100
Atime = hour + minute / 60.d0 + second / 3600.d0
Atime = Atime / 24.40
nm = month - 2
ny = year - 1600
if(nm .le. 0) then
nm = nm + 12
ny = ny -1
end if
nl = ny/ 4
nll = ny / 100
nlll = ny / 400
Date = ny * 365 + nl - nll + nlll + mon (nm) + day
goto_9100
continue
jd = Date
3400 = (jd - 1) / 146097
jd = jd - j400 * 146097
3100 = (jd - 1) / 36524

if(j100 .eq. 4) j100 = 3

jd = jd - j100 * 36524
j4 = (jd-1) / 1461
jd = jd - j4 * 1461

(jd-1)/ 365

if(j1 .eq. 4) j1

= 3

jd = jd - j1 * 365
year = 1600 + j1 + j4 * 4 + j100 * 100 + j400 * 400
do1j=1,12

if(jd .le. mon (j + 1)) then
month = j + 2

day = jd - mon (j)
if (month .gt. 12) then
month = month - 12
year = year + 1
end if
goto 9_
end if
continue
continue
Ymd = year * 10000 + month * 100 + day
ttime = Atime * 24.40
hour = ttime
ttime = ttime - hour
ttime = ttime * 60.d0
minute = ttime .
ttime = +ttime - minute
second = ttime 60.4d0
Time = hour * 10000 + minute * 100 + second
goto 9100
end

(1) See [Info level selection| in Section 6.2.

5.3.3 Annotated list of subroutines

Subroutines are classified into sub-packages shown in Table 7.

Table 7. sub packages

sub-package type contents
1 main-pack A easydall fitar getar getdata gui0 main
ardock-pack A ardock arsimu autodock clickl click2 cohgraph guil gui2 gui3
maskedar pbpgraph pwfile pwgraph subaic subwinl
3 datard-pack R clab cpar cset datard fparam gparam ipar iset jdate rpar rparam
4 arfit-pack R zrisr%tle arfilw arfit arfitw arorder build click3 indexset marfit sarfit
sssolver subwin2
5 marts-pack R gmarts gmartw marts martspar martsw remtsbx subabh subqrs
tarmodel
6 misc-pack R maskrs ready
7 pwspx-pack R pwspx subcoh subnosx
8 pwevol-pack A llset pwevol pwprof
9 lgraph-pack R gfile lgraph
10 linop-pack R cxhushld cxsolve fouger fougel hushld invmat posmat rn0O1 rnor
11 dall-pack R f)?llf/ilall eval innerp lftint numdif
12 kalman-pack R both clr kalman kalmaw left right fmatrix
13 baysea-pack R decode exhsld exsolve init sadjust sadjuw setd setdc setx subsea
14 mpi-pack R mpiinit mpioff mpion mpisoff mpison mpisres mpistop
15 keysave-pack R jfrex keympi keysave markinp
16 areachk-pack R areachk iw nw
17 selfcom-pack R oml selfcom selfend showc showi showm showm?2 showm3 showr
showw them
18 bug-pack R bug bughtrap bugnet bugp bugvtrap debug sbuggle

N.B. A-type sub-packages are those specialized for ARdock. R-type sub-packages are re-usable ones.

1. main-pack

required sub-packages: ardock-pack areachk-pack arfit-pack baysea-pack bug-pack dall-
pack datard-pack kalman-pack keysave-pack lgraph-pack linop-pack marts-pack misc-
pack (mpi-pack) pwevol-pack pwspx-pack (selfcom-pack)

1.2 getar

e Reads AR model file to recover AR model parameters.
e See Section 5.4.2 for the proper form of the file.

1.3 getdata

e Reads time series data file. See Section 5.4.1 for the proper form of the file.
1.4 fitar

e Assembles and fits an E-MARTS model to get the AR component parameters.

e See Section 2.6.
1.5 easydall

e Reserves work area and calls subroutine dall for the log likelihood maximization.
e See Appendix D

1.6 guil

e Prompts user for the choice between ‘data’ and ‘model’.
2. ardock-pack

required sub-packages: areachk-pack arfit-pack baysea-pack bug-pack datard-pack kalman-
pack keysave-pack lgraph-pack linop-pack misc-pack (mpi-pack) pwevol-pack pwspx-
pack (selfcom-pack)

2.1 ardock
e Realizes interactive system analysis. See Section 6, especially Figure 1a.
2.2 arsimu

e Executes simulations by the basic model(1)

Cmd input u; output xy

i impulse function(50) impulse response(52)

s step function(58) step response(59)

f trigonometric function (54) frequency response(56)
n simulated innovation(2,32) simulated time series

2.3 maskedar

e Produces masked AR model(61)
2.4 autodock

e Produces feedback characteristic matriz(62) for given ‘watching set’ of variables.
2.5 subaic

e Evaluates the goodness of block diagonal structure of innovation matrix(44).
e d_AIC is the difference of AIC(78) and AIC(71) of the ordinary MAR model(4).

2.6 pbpgraph
e Displays power building profile (35) on the character display.
2.7 pwgraph

e Displays power spectrum (40) and relative power contribution (49) on the char-
acter display.

2.8 cohgraph
e Displays graph of coherency (43) on the character display.
2.9 pwfile

e Writes power spectrum and relative power contribution to a file (cf. Section
5.4.3).

2.10 guil

e Interprets an interactive analysis command.
2.11 gui2

e Prompts the user to set block structure (45).
2.12 gui3

e Prompts the user to set frequency range of power spectrum(40), coherency (43)
and frequency response (56).

2.13 clickl

e Accepts an interactive analysis command.
2.14 click2

e Accepts a mask edit command.
2.15 subwinl

e Prompts the user for an interactive analysis command.
3. datard-pack
required sub-packages: areachk-pack keysave-pack misc-pack (mpi-pack) (selfcom-pack)
3.1 datard
e Reads time series data prepared in the proper form(see Section 5.4.1).

3.2 rparam

e Read/writes time series parameter set (cf. Section 5.4.1)

3.3 fparam
e Read/writes general parameter set.
3.4 gparam
e Read/writes an item of parameter set.
3.5 jdate
e Converts calendar data to the day count from Jun. 1. 1601.AD.
variable type meaning
Ymd i for example 19980714 for Jul. 14, 1998 AD
Time 133206 for 1 o’clock 32 minutes 6 second PM

i
Date i day count from Jan.1, 1601 AD

Atime r (hour + minute / 60 + second / 3600)/24
Dayoweek i Mon, Tue, ..., Sat, Sun/1, 2, ..., 6,0

e The inverse transformation is possible.

3.6 cpar

e Recalls ‘¢’ type time series parameter. (cf. See Section 5.4.1)
3.7 ipar

e Recalls ‘i’ type time series parameter. (cf. See Section 5.4.1)
3.8 rpar

e Recalls ‘1’ type time series parameter. (cf. See Section 5.4.1)
3.9 clab

e Recalls the label of a channel. (cf. See Section 5.4.1)
3.10 cset

e Sets ‘c’ type time series parameter. (cf. See Section 5.4.1)
3.11 iset

e Sets ‘i’ type time series parameter. (cf. See Section 5.4.1)
3.12 rset

e Sets ‘v’ type time series parameter. (cf. See Section 5.4.1)
4. arfit-pack
required sub-packages: areachk-pack datard-pack keysave-pack linop-pack misc-pack (mpi-
pack) (selfcom-pack)
4.1 arfit
e Reserves work area and calls arfitw
4.2 arfitw
e Fits MAR/SAR/PAR model (see Section 2.2, 2.4 and 4.1) to given data.
4.3 marfit
o Least squares method for MAR/PAR model(15) fitting.
4.4 sarfit
e SAR model fit and index matrix search(cf. eq.(23))

variable meaning
aick AICE, (69)
aic AIC,, (71)

e The causality degree matrix is shown.

[Causality degree matrix] Assume that the subset AR model specified by
index matrix S is MAICE(Minimum AIC Estimate). Let 5% be the index matrix
identical to S with the only exception of SZ]J =1 — S, then we have

AIC(S) < AIC(SY).

The causality degree matriz D is defined as the matrix whose (i, 7)-th element is
defined by -
(80) D;j = (2 x Sij — 1) x (AIC(SY) — AIC(S)).
Sij’s value is known from the sign of D;;, and |D;;| = AIC(S7) — AIC(S).
4.5 build
e Builds up linear equation matrix(67)
4.6 indexset

e Expands a row of the index matrix S for the construction of matrix (67) for SAR
model fit.

4.7 sssolver

e Composes and solves subset regression equation(66) to get LSE of subset AR
model (23) parameter. Only columns corresponding S;; = 1 of eq.(67) are pro-
duced.

4.8 click3
e Edits the index matrix
4.9 subwin2
e Shows the index matrix
4.10 arorder
e MAICE of AR order.
4.11 arfile
e Calls arfilw
4.12 arfilw
e Read/writes AR model file

5. marts-pack

required sub-packages: areachk-pack arfit-pack datard-pack kalman-pack linop-pack (mpi-
pack) (selfcom-pack)

5.1 marts

e Computes the log likelihood of E-MARTS model (30) for given parameter using
state space representation (21)

variable type meaning

Par r parameter vector 6 (22)

Npar i dimension of 0

El r log likelihood ¢ of E-MARTS model
Lel i > (if £ is successfully computed

e Reserves work area and calls martsw. (cf. See Section 2.6)

5.2 martsw

variable type meaning

My i dimension of y,, in eq.(21)

Mv i dimension of v,, in eq.(21)

Mz i dimension of z, in eq.(21)

Mn i length of data

Maxl i work area size for ¥ and ¢

Z r zy; in eq.(102)

\Y% r Vi in (103)

G r I'in eq.(21)

Sigv r Yy = E{v,vl}. See (21)

Sigr r Yr = E{r,rL}. See (21)

\'%3 s Irf s Icf 5 Nf - ‘llh“f(j), ICf(j) = Vf(J) (] = 1, 2, te ,Nf)
Vh, Ith, Ieh ,Nh — @py pa) = Vh() (G =1,2,--,Nh)

e Y.p is set equal to zero matrix in the present version.

5.3 martspar

variable type meaning
Cmd c '<--=":code
'——=>":decode
Key ¢ tvar’s X
'svar’: Yg
‘trinit’: trend initial value
'sight’: 7 in eq.(29)
'v-weight’: ug,us, ..., ux in eq.(29)
‘d-weight”: uf, ud,...,u% in eq. (29)
var’: X
‘ar’: {Al, AQ, . ,A]V[}
'model’ : model structure print out
Nch i channel selection
Par r 0 (22)
Ir , Ic i Val and Ival are Ir x Ic matrices
Val T input/output real matrix
Ival i input/output integer matrix

e Code/decode E-MARTS model parameter vector 8. (See Section 2.6).

5.4 gmarts

e Produces an initial guess of the parameter of the E-MARTS model(30).
e Calls gmartw.

5.5 gmartw

(a) Apply BAYSEA procedure to each channel data, to obtain residual series, initial
value of the trend and estimates of X7 and Xg.

(b) fit MAR (or SAR) model to the multivariate residual series to obtain a initial
guess of {A,,} and X.

(c) if necessary, user can force the TAR structure for the AR component. Then this
routine requests initial guesses of TAR model parameters.

5.6 tarmodel
e Builds teleological model (28) by constructing (127).
5.7 remtsbx
e Constructs a diagonal matrix.
5.8 subabh
e Computes eqs.(117) and (118).
5.9 subqrs
e Computes eq.(125)

6. misc-pack miscellany routines

required subpackages: (mpi-pack) (selfcom-pack)
6.1 ready

e Searches for the data body in a file.
6.2 maskrs

e Resets mask C in eq.(61).
7. pwspx-pack

required subpackages: linop-pack (mpi-pack) (selfcom-pack)
7.1 pwspx

e Computes power spectrum(40).
caution: Should be careful about the use of eq.(40). When AR model is fitted
by the least squares method, for example, the model might not be stationary and
the obtained value has no physical meaning.

7.2 subnosx

e Computes relative power contribution(49).
7.3 subcoh

e Computes choherency (43).

8. pwevol-pack

required subpackages: areachk-pack kalman-pack (mpi-pack) (selfcom-pack)
8.1 pwevol

e Constructs the recursion equation(36) and computes power building profile (35)
and the scaling factor (42).

8.2 pwprof
e Computes power building profile(35)
8.3 llset

e Constructs the state transition matrix ¥ in eq.(36)

9. lgraph-pack

required subpackages: (mpi-pack) (selfcom-pack)
9.1 lgraph
e Displays a graph of a timeseries on the character display.

9.2 gfile

e Outputs graphics data summarized in Table 11. in Ssection 5.4.3.
10. linop-pack

required subpackages: (mpi-pack) (selfcom-pack)
10.1 hushld

e Executes Householder transformation(89) of a real matrix.

variable = meaning
Hh N, K N x K matrix Hh is X of eq. (86)

10.2 solve

e Solves Householder transformed linear equation(90).

variable meaning

Hh, K K x K matrix Hh is

w-(72)

A IP x IP upper triangular matrix
B IP x (K — IP) matrix,
which is replaced by A~!B (91)
c input value is a (K — IP) x (K — I P) upper triangular matrix.

output value is CTC (92)

10.3 cxhushld

e Complex version of ‘hushld’.
10.4 cxsolve

e Complex version of ‘solve’.
10.5 fouger

e Executes Fourier transformation by Goertzel method.
e Calls fougel

10.6 fougel

e Executes Fourier transformation by Goertzel method.

variable meaning

G G(1),i=0,1,..lg

Af frequency f

Fe cosine transform ;G (i) cos(27 f1)
Fs sine transform ¥,G(7) sin(27 f1)

10.7 posmat
e Executes Cholesky decomposition(31).

variable meaning

Sqrvar X, L
Det det X
Terr = 0 if computation is successful

e Together with L, its inverse L™! is given in the compact form
i oy oo l:kl
N lon laa - k2
(81) L=)

Ik k2 o gk

where

lil e o 0
Iy I8 ... 0

(82) Az =
ler ke oo Ut

e The inverse computation, eg. the construction of ¥ = LT L, can be done.
10.8 invmat

e Executes inversion and determinant computation of a positive definite matrix.

variable meaning

Sqrvar %, %!

Det det

Terr = 0 if computation is successful

10.9 rn01

e Generates uniform random number
variable meaning

rn01 Uniform random number
Ix > (0 to set initial value
= 0 to generate a random number

10.10 rnor

e Generates normal random number by Box-Miiller method

variable meaning
rnor ~ N(0, Std?)
Std standard deviation

11. dall-pack

required sub-packages: areachk-pack lgraph-pack (mpi-pack) (selfcom-pack)
11.1 dall
e Numerically optimizes log likelihoods. See Appendix D.

variable meaning
Model name of the subroutine to compute log likelihood

A parameter vector 6
Ip dimension of 6
El log likelihood !
Vd work area
Endc end code (= *.0 if optimization is successful)
Step for numerical differentiation by eq.(109)
Limit NCOUNT limit
Lpsw out put control
0: no print
3: maximum print
11.2 bill
e Davidon’s algorithm (see Figure 2 of Appendix D).
11.3 numdif

e Executes numerical differentiation (109).
11.4 innerp

e Computation of the inner product.
11.5 Iftint

e Find the largest integer less than or equal to X.

11.6 eval

e Evaluate a function along a line in the parameter space.
12. kalman-pack

required sub-packages: areachk-pack linop-pack (mpi-pack) (selfcom-pack)

12.1 kalman
e Executes Kalman filtering procedure (cf. Appendix C)

variable meaning
My dimension of y,, in eq.(21)
Myv dimension of v,, in eq.(21)
Mz dimension of z,, in eq.(21)
Mn length of data
Maxl work area size for ¥ and ¢
Z zy|; in eq.(102)
v Vi in (103)
G I in eq.(21)
Sigv Yy = E{v,vTl}
Sigr Yr = E{r,r}

Y {y.}
Rlim missing data mark

NO Initial data length
El log likelihood 1 (104)

Lel > 0 if [is successfully computed.
e Calls kalmaw
12.2 kalmaw
variable meaning
7t Z44—1 in (97)
vt Vije—1 in (98)
12.3 both
e Executes computation like \Ith,”t,l\I/T in eq.(98).
12.4 left
e Executes computation like Wz, ;;_; in eq.(97).
12.5 right
e Executes computation like Vt‘t,lth in eq.(100).
12.6 clr

e (lears a work array.
12.7 fmatrix
e Shows the structure of the matrix defines in Terms of Vf, Irf, Icf and Nf.

13. baysea-pack

required sub-packages: areachk-pack datard-pack keysave-pack lgraph-pack (mpi-pack)
(selfcom-pack)

13.1 sadjust

e Adjusts one dimensional time series data for the seasonality by BAYSEA proce-
dure (Appendix B).

e Calls sadjuw.

13.2 sadjuw
variable meaning
Lpe Seasonality length, L
Trinit {T_l, T()}
Vtrend XN (T; — 2T, + T;_2)%/N
Vseas Ef\;LH(Ef:lSi_j)Q/(N —L)
13.3 subsea

e Seasonally adjusts given time series

variable meaning
Ys {yn}
Rlim missing value mark. See Table 9.
Dmin DD value that attains the minimum ABIC
Abicm minimum ABIC (96)
Season {S,}
Trend {T.}
Irreg {I,}
e It is a simplified version of BAYSEA (Akaike and Ishiguro, 1980).

e Hyperparameteres u,v and w are controlled by DD and RIGID through equa-
tions:

w = AF x DD/RIGID
v = DD
w = DD x RIGID/VL

where L = 4 for quarterly data. DD and RIGID are selected minimizing
ABIC(Akaike (1980)) under the condition AF = 1.0. AF is called “Abuse Fac-

7

tor”.

13.4 setd

e Composes a difference operator.
13.5 setdc

e Produces the prior distribution part of the design matrix.
13.6 setx

e Produces the log likelihood part of the design matrix.
13.7 decode

e Interprets the estimated parameter.
13.8 exhsld

e Constructs Householder transformation of a band structure matrix.
13.9 exsolve

e Solves least squares problem.
13.10 init

e Computes initial values of trend component or seasonal component.
14. mpi-pack

required sub-packages: (selfcom-pack)
14.1 mpiinit
e Initializes MPI.

14.2 mpion

e Starts parallel computation.
14.3 mpioff

e Finishes parallel computation.
14.4 mpison

e Allocates parallel jobs to processors.
14.5 mpisoff

e Gathers results from processors.
14.6 mpisres

e Gathers results from processors.
14.7 mpistop

e Stops (parallel) computation.

15. keysave-pack

required sub-packages: (mpi-pack) (selfcom-pack)
15.1 keysave
e Saves and retraces keyboard inputs.
15.2 keympi
e ‘keysave’ for parallel computation.
15.3 markinp
e Marks keyboard inputs.
15.4 jfrex
e Controls keyboard reading.

16. areachk-pack

required sub-packages: (selfcom-pack)
16.1 areachk
e Checks work area size.
16.2 iw
e Allocates integer type work area in 1WK’ of
common /comwork/ wK , iWK , limflag
16.3 nw

e Allocates real type work area in ‘wK’ of

common /comwork/ wK , iWK , limflag

17. selfcom-pack

required sub-packages: (mpi-pack)
17.1 selfcom

e Starts subroutine message printing.
17.2 selfend

e Ends subroutine message printing.
17.3 showce

e Prints out character type variable.
17.4 showi

e Prints out integer type variable.
17.5 showr
e Prints out real type variable.
17.6 showw
e Prints out work area size.
17.7 showm
e Prints out memo.
17.8 showm?2
e Prints out two line memo.
17.9 showm3
e Prints out three line memo.
17.10 them
e Activates ‘self comment’ function.
17.11 oml
e Prints out ‘Open Market Licence’ Terms (cf. Section 5.1.4).

18. bug-pack

required sub-packages: none
18.1 bug
e Read/writes bug.map. See Section F.
18.2 shuggle
e Smuggles message into the program.
18.3 bugnet
e Shows contents of an array.
18.4 bughtrap
e Watches unexpected discrepancy between processors in parallel computation.
18.5 bugvtrap
e Watches unexpected changes of variables.
18.6 debug
e Enables bug routine to skip some of bug.map lines.
18.7 bugp

e Halts the execution of the program.

5.4 Files
5.4.1 Time series data file

Parameters to be placed on top of time series data are shown in the following table:

Table 9. Time Series Data parameter

key type memo

DATASTARTINGLINE a must. Everything before this line is ignored.
tparam begin mark, a must.

title ¢ name of the dataset

date i date of the first record

in yyyymmdd format
(for example 19980714 for Jul. 14, 1998 AD)

time i time of the first record in hhmmss format
For example (133206 for 1 o’clock 32 minutes 6 second PM)
longitude r future use
latitude T future use
altitude T future use
length i The length of the data, N
0 if ‘length’ is to be counted
sampling r sampling interval in the unit of “unit”
unit c time unit of the sampling interval.
day, hour, min. sec., etc.
missing r missing observation mark. If the value is 0.0,

no missing observation assumed.

If the value is greater than 0.0 any value
greater or equal to this value is treated
as a missing observation.

channel i Number of channels of the data, K
format ¢ Format of the data
‘timeorder’ for data stored in the format
r1,1, 21,2, ", TLK
T2,1, T22, ", T2K
TN,1, TN2, "', TNK
‘channelwise’ for data in the format
T1,1, T21, ", INL1
1,2, T22, -, IN2
T, T2,K, ", INK
label ¢ ‘yes’ or ‘no’
‘yes’ if label of each channel is given in the file
calibration ¢ ‘yes’ or ‘no’
‘yes’ if calibration values are given
end end mark, a must

N.B. type ‘¢’ indicates character type, ‘i’ integer number, and ‘r’ real number.

[Examples]

[Bicycle Datal

ot20

Professor Oya’s data
DATASTARTINGLINE
tparam

title= 0T20.DAT
sampling= 0.05

unit= sec
channel=5
length=1000

format=timeorder

calibration=yes L ¢D)
label=yes (2)
end
’role’ °HA’ °HT’ ’ST’ °’PT? Lo (2)
*
0.0097888 0.0353988 1.0379724 -1.4243424 1.1069856 (1
37 25 7 29 45
31 30 19 26 42
21 31 25 25 55
(1) Calibration factors are given.
(2) Labels of channel are given.
(*) Assume that this data set is stored in the file ‘bicycle.dat’.
[Economic Data)
toukei suuri example
DATASTARTINGLINE
tparam
title= IWM data
date = 19680101
sampling = 0.25 e D)
unit = year e (1)

length=84
channel=3
format= timeorder
label=yes
end

)I -)
(4X,10X,F10.0,F10.0,F10.4)
6801 33 36.2
6802 34 36.7
6803 35 37.1

(1) It is quarterly data.

*WPI’

[ealeplen)

’M2CD’
0.9 341692
0.6 354823
0.8 363018

(*) Assume that this data set is stored in the file ‘TWM.dat’.

5.4.2 AR model file

Parameter set of AR model is summarized in Table 10.

Table 10. AR model parameters

key type
DATASTARTINGLINE a must. Everything before this line is ignored.
tparam begin mark, a must
title ¢ name of the dataset
aic r AIC value, if it is available
arfit c name of the procedure used to fit the model
archannel i number of analyzed channel K of data
arorder i order of the AR model M
nparam i number of the adjusted parameters by ‘arfit’
arlabel ¢ ‘yves’ or ‘no’

‘ves’ if name of each channel is given in the file
end end mark, a must

A heading containing above information and a data body of the form:

b))
Aq

An

makes an AR model file. An AR model file is generated whenever model fitting is executed by
ARdock. The name ‘aaaa.AR’ is given to the file if the name of the data file is ‘aaaa.dat’, for

example.

[Example]

DATASTARTINGLINE i i (1)

tparam e (1)

title=IWM data (2)

date= 19680101 2

time= 0

longitude= .00000000D+00

latitude= .00000000D+00

altitude= .00000000D+00

length= 84 2)

sampling= .25000000D+00 .. 2

unit=year e (2)

missing= .00000000D+00

channel= 3 e (2)

format=timeorder =L (2)

label=yes e (2)

calibration=no

aic= .12389845D+04 e (3

arfit=e-marts (3)

archannel= 3 (1)

arorder= T 1

nparam= 0

arlabel=yes

reserve=reserved key

end e (1)

’ITIP-I’ °’WPI’ °M2CD’ e (2)

(4d420.10) e (1)
.1226827258D+01 -.1376259436D+00 3078189288D+00 (1

-.1376259436D+00 .1065334082D+01 -.1240825697D+00
.30781892838D+00 -.1240825697D+00 1055016054D+00
.6264084454D+00 6572288677D+00 1183363342D-01
-.1663058558D+00 9600261510D+00 1345653910D+00

.3372700987D-02 -.2477911763D+00 9559383748D+00

(1) These lines are indispensable. Other lines can be omitted. Inversely, prepare a file with
these lines then it can be fed to ARdock.

(2) This is the contents of the file TWM.AR’ which is automatically generated when MARTS
model is fitted to ‘TWM.dat’. Lines marked with (2) are inherited from ‘IWM.dat’.

(3) These lines are obtained as the result of model is fitting.

5.4.3 Graphics data

Suitably scaled graphical presentations are indispensable for correct understanding of a system.
ARdock produces file output of graphics data including the scaling information. The heading
part of each set of data has the description of the following graphics parameters.

Table 11. Graphics Parameter

key type

gfile begin mark, a must

figtype ‘timeseries’, ‘spectrum’ or ‘contribution’

figtitle title of the graph

length i length of the data

channel i number of channels

unit c x-axis unit

xmin r minimum of x-axis

xdiff r X-axis spacing

ylabel c y-axis label

ymin T y-axis minimum

ymax r y-axis maximum

ymissing r missing value mark. If the value is 0.0,
there is no missing value.
If the value is greater than 0.0 any value
greater or equal to this value should be treated
as a missing value.

end end mark, a must

[Examples]

[timeseries]

gfile
figtype=timeseries
figtitle=power building profile$

length= 100

channel— 1

unit=s

xmin= 0 000000000000000000E+00
xdiff= 0. 500000000000000028 -01

ylabel= =role

ymin= -1.88751305263359570

ymax= 1.88751305263359570

ymissing= 0.000000000000000000E+00

end

4 (1)
(4d20.

(1) Power building profile of variable ‘4’
[spectrum]

gfile

figtype=spectrum
figtitle=Power Spectrum
length= 81

channel=_1
unit=cycle/sec

xmin= 0,000000000000000000E+00
xdiff= 0.125000000000000000
ylabel=role

ymin= 0.000000000000000000E+00
ymax= 13.5973532085583741

ymissing= 0.000000000000000000E+00
an

(4d20.

0
0

(1) Power spectrum of variable ‘4’
[contribution]

gfile

figtype=contribution
figtitle=Power Contribution
length= 81

channel= 3

unit=cycle/sec

xmin= 0.00000000000000000
xdiff= 0.1250000000000000
ylabel=role

ymin= 0.000000000000000000E+00

ymax= 1.00000000000000000

ymissing= 0.000000000000000000E+00

end

1345 (1@
(4d20 10)

0000QE+00
000000

(1) Cumulative relative power contributions derived assuming the block structure {1,3,4,5}.

(2) Relative power contributions from all blocks add up to the obvious 1.0, which need
not be output.

5.4.4 Q@QKEEP.KEY file

User’s keyboard inputs can be recorded in this file and referred in retracing mode. See an
example in Section 6.6.

5.4.5 E-MARTS file

Model fitting based on the numerical maximization of the log likelihood can be a time consuming
task. ARdock stores values of the model parameters at the point of ‘DALL?’” prompt. See Figure
1b of Section 6. User can resume the optimization where the parameters are saved. A file named
‘aaaa.WK’ is produced when time series data in the file ‘aaaa.dat’ is analysed.

5.4.6 Tutorial message file

ARdock is so designed that tutorial help messages are given on user’s choice (see Tabel 12a of
Section 6). The help messages are stored in the file named TUTORIAL.TXT.

6 User’s Manual

6.1 Prompt messages

The prompt messages from ARdock are summarized in Tables 12a, b and c. One ARdock
session can be devided into three stages, start-up stage; model fit stage and interactive analysis
stage. Prompts in the start-up stage and the analysis stage are collected in Tables 12a and
b, respectively. Relations between these prompts are schematically shown in Figure la. The
relations between prompts in Table 12c. is described in Figures 1b and c.

6.2 Starting up

[Info level selection]

SELF COMMENT —————————————————————
Subroutines in this program speak for themselves in order of

their appearances, if THEM(!) is(!) called at the beginning of the program,
and the iNFO level is set properly. This function is provided to encourage
those who would like to make modifications.

Present info level is_ 9.
Make it O if you need no COMMENTs.
<<<

self comment ------————————————————————————————
jdate/starts

Converts calendar data to the day count from
Jun. 1. 1601.AD., and vice versa.

I Ymd2date = -—=>,

I Ymd = 19680101, L (2)

I Time = 0,

self comment -------------———-————————————————-

jdate/ended

0 Date = 134350, e (3)
changed!

0 Atime = .0000D+00,

0 Dayoweek = 1, e (3
changed!

(1) Answer ‘0’, then none of following ‘self comments’ will appear. Here and following
examples, key-inputs are ‘parenthesized’ by ‘<<<’ and ‘>>>’.

(2) Calendar date is given. See [Another exampl] in Section 5.3.2.
(3) Julian date and the day-of-week is computed.

[Key-Save option]

KS-file is Q@KEEP.KEY
KEY: s)ave, r)etrace, b)atch-mode or n)ullify
optlon function

s : to save key inputs
n . no save , no retrace
: for tutorial help make it S or N , instead of s or n.
r : to retrace saved inputs
BACH mode e 3
<<
S e (12
>>>
SAVE mode

(1) Inputs answering prompts are saved in the file named QKEEP.KEY and could be
retraced.

(2) To retrace saved inputs, give ‘r’ instead of ‘s’

(3) See section 6.6 for farther details of this option.

[Data selection]

d)ata or m)odel?:
<<<

o (1)
>>>

data file:
<<<

bicycle.dat .. (@D)
>>>
file opener started for mt 18

DATASTARTINGLINE
tparam values:

1:title = OT20.DAT0

2:date =
3:time = 0
4:longitude = .000000D+00
5:latitude = .000000D+00
6:altitude = .000000D+00
7:length = 1000
8:sampling = .500000D-01
9:unit = se
10:missing = .000000D+00
11:channel =
12:format = timeorder
13:1abel = yes
14:calibration = yes L. (2)
"'5'- dimensional Data of lemgth 1000 (3)
1 role .370D+02 .310D+02 .210D+02 130D+02 -.100D+01
2 HA 250D+02 300D+02 .310D+02 330D+02 390D+02
3 HT 700D+01 190D+02 250D+02 330D+02 310D+02
4 ST 290D+02 .260D+02 .250D+02 220D+02 150D+02
5 PT .450D+02 .420D+02 .550D+02 720D+02 730D+02
select components
<<<
12340 e 4)
>>>
4-dimensional data of length 1000 (5
role .362D+00 .303D+00 206D+00 127D+00 -.979D-02
HA .885D+00 .106D+01 .110D+01 117D+01 138D+01
HT .727D+01 .197D+02 .259D+02 343D+0 322D+02
ST -.413D+02 -.370D+02 -.356D+02 -.313D+02 -.214D+02
Initial data length
<<<
0 (6)
>>>
E-MARTS file = bicycle.WK oL, ¢p)
(1) The ‘bicycle data’ is chosen.
(2) Calibration factors are supplied.
(3) Before the calibration.
(4) Channels to be analyzed should be chosen here. It is possible to change the ordering.

Fill zeros instead of the numbers of excluded channels.
(5) Calibrated values.
(6) Length of initial data Ny. See Section 4.1.
(7) Parameters to specify E-MARTS model is saved here.

Table 12a. Prompt messages in start-up stage

prompt type input action example™®
Present info level is 9. i 9 if self comments of routines are to be printed. 42
Make it 0 if ... 0 if no self comments are required.
KS-file is ... c S to save key inputs 43, 58
S to save key inputs and activate the tutorial
help function
r to retrace saved inputs 58-60
n no save, no retrace
N no save, no retrace, but requests tutorial helps
b batch mode(® "n’ 59
B batch mode(® ’s’ 59
d)ata or m)odel? c m model 51
d data 43
AR file: c [a-z0-9.]* file name 51
data file: c [a-z0-9.]* file name 43
select components: i [0-K]X see Section 6.2 [Data selection] 43
Initial data length: i [0-9]* = maximum lag Ny 43
(1) page of ...
(2) Prepare input file with the QKEEP.KEY file format. See Section 6.6.
Table 12b. Prompt messages in interactive analysis stage
prompt type input action example
ARdock: ¢
p power building profile 54
P power spectrum (+ relative power contribution) 54
n simulation with generated noise 56, 57
a evokes autodock procedure 57
F frequency band set 53
B block boundary set 52
ci ik response to impulse input to k-th variable 55
sk response to step input to k-th variable 56
fk frequency response to k-th variable 55
ck coherency to k-th variable 55
1k change looking channel to the k-th cahnnel 56
mask edit: g7r?7o0? ci r [I-K]* mask operation(1) 52
o [1-K] mask operation(2) 53
¢ g end of mask operation
specify watching set: i [01]% 1 in the k-th position indicates the inclusion of 57
the k-th variable in the set
frequency band: T fis n see Section 6.5 [Frequency range] 53
block boundary: i [1-K] block boundary (see Section 6.5 [Block structure] 52

|

Present info level is ...

|

KS-file is QKEEP.KEY
KEY: s)ave, c)heck, ...

J

d)ata or m)odel?

<K

? d data file:
m }
select components:
AR file: Initial data length:
< Fig. 1b >
ARdock:

frequency band:

block boundary:

specify watching set

mask edit: g?r?o?

"

Figure 1a. Prompt messages in start-up stage and interactive analysis stage

Table 12c. Prompt messages in model fit stage

prompt type input action example
new model? ¢ y or n
E-MARTS file: c [a-z0-9]* file name
max AR order: i My, Range of MAICE search 48
mean component: ¢ ¢ constant mean
1 linear trend
S seasonal variation and trend 48
ci pk polynomial of order k
give periods: 1 K seasonal periods 48
search mode: f?7a’m? ¢ £ full automatic search for the 48
optimal combination of hyper
parameter
a automatic search for one channel
m interactive manual search
search mode: a?m? c a automatic
m manual
abuse-factor: T AF
RIGID: g7¢? cr cr r = RIGID
¢ g end of the search
SAR: a?m?n? ¢ a automatic 49
m manual
n no SAR structure
indexm edit: g?r? ci r[l-K]* index matrix setting. Input
four digits i,j,k,] to perform
zero-one reversal of rectangu-
lar area marked by the (i,7)-
th element and (k,[)-th ele-
ment
¢ g end of the operation
OK? ¢ yorn
TAR controller dim.: i K, in eq. (25) 50
sight: r T in eq.(29) 50
v-weights: r U2, U3, ..., ug in eq.(29) 50
d-weights: r uf, ud, .. ug ineq. (29) 50
DALL? ¢ yorn 50

(1) When the computer is a parallel machine, the processing of channels are executed

parallely.

new model?

E-MARTS file:

5

max AR order:

}

mean component:

give periods:

o

c, 1, p. |

search mode: f?a?m?

a7m .
Fig.1c

SAR: a?m?n?

indexm edit: g7r?

\-5 ~
o
=

A
Y

TAR controller dim.:

? 70 sight: — v-weights:
0 !
d-weights:
DALL?

4

Figure 1b. Model fit stage prompts

111

abuse-factor:

RIGID: g7?c?

search mode: a?m?

Figure 1c. BAYSEA stage prompts

6.3 Model Assembly
See section 2.6.
[AR order]
max AR order:
<<<

5
>>>
mean component: c?17s?

(1) Maximum order for searching MAICE.

[Mean component model]

mean component: c?17s?

<<

s

>>>
channels are:WPI M2CD
give periods:

search mode: f7a?m?
<<<

abic (.5000000000D+01
abic (.5946028086D+01

""SAR: a?m?n?

N

ITP-I

202.02
211.27

Select ‘s’ for trend and seasonal adjustment, ‘¢’ for constant, and ‘I’ for linear.

(1)

(2) Specify seasonality period length of each channel.

(3) Select either full-automatic (f), automatic (a) or manual mode(m).
(4)

BAYSEA(Appendix B) is used. After the decision of RIGID and DD by minimum
ABIC procedure, the ‘abuse factor’ AF is increased to 30.0 to decompose each channel
data into trend, seasonal and irregular component. With a parallel computer, this
computation can be executed parallelly.

[SAR Model]
SAR: a?m?n?
<L
a e e (1)
>>>)
order selection
order aic
0 23462.12
1 11949.24
2 10994.77
3 10538.36
4 10355.07
5 10295.10
6 10282.08
7 10274.50
8 10233.61
9 10239.92
10 10239.80
lag = 8 AIC = 10233.61 L. (2)
effective variable search for 1 - th variable
AIC #param Indexv
-2098.87 35 1111
: 1702.45 27 0111
: -1888.85 27 1011
o —2099.17 27 1101
;. =-2068.80 27 1110
-2099.17 27 1101
: 1785.09 19 0101
: —-1819.20 19 1001
: -2055.15 19 1100
-2099.17 27 1101
effective variable search for 2 - th variable
AT param Indexv
-223.25 36 1111
: -81.65 28 0111
1509.78 28 1011
: 3.56 28 1101
: -190.60 28 1110
-223.25 | 36 1111 .
effective variable search for 3 - th variable
AT param Indexv
7085.77 37 1111
: 7216.23 29 0111
: 7172.62 29 1011
: 7752.66 29 1101
: 7085.19 29 1110
7085.19 29 1110
: 7223.74 21 0110
: 7193.53 21 1010
: 7808.70 21 1100
7085.19 | 29 1110 .
effective variable search for 4 - th variable
AT param Indexv
5470.76 38 1111
: 5471.15 30 0111
: 5646.16 30 1011
: 5681.74 30 1101
: 7145.71 30 1110
5470.76 38 1111
summary
lag = 8 AIC = 10233.52 ... (3)
system structure
role 1101
HA 1111
HT 1110
ST 1111 e (4)
causality degree matrix
role 3884.3 280.0 -.3 44 .0
HA 141.6 1733.0 226.8 32.6
HT 138.5 108.3 723.5 -.6
4 175.4 211.0 1675.0 , (5)

ST .
TAR controller dim.:

(1) SAR model is chosen and automatic search for the index matrix is selected.

2) MAICE order is 8. AIC value is of the ordinary MAR model(4).
3) AIC value of the SAR model(23).
4) The index matrix S.

)

(
(
(
(5

The causality degree matrix. See Section 2.4.
[TAR Model]

TAR controller dim.:
<<

1 1
>>>
sight:
<<
>>>
input 2 weights
v-weights:
<<
11 2
>>>
input 3 diff weights
d-weights:

(1) Select 0 if TAR is not necessary, any other digit for TAR model.
(2) Supply TAR mode parameter initial guesses.

6.4 Model Fit

[DALL]
DALL?
<L
Yo e (D)
>>>
Dl:==========]log likelihood maximization ========= (2)
Dl:number of processor = 8

Dl:no Limit for NCOUNT

D2:value = O.TS

D2:point
.70707D-01 .61259D-02 .75479D-02 10735D+02 63100D-01
.50231D+02 .49968D+02 .27433D+02 25162D+02 32900D+02
.31163D+02 10826D+01 .15112D-01 89175D+00 19791D+00
.28376D-01 .11369D+01 .89970D+00 25218D-01 -.18303D+00

-.17096D+00 88657D+00 -.14609D-01 69909D+00 -.13084D-01

.64189D+00

D2:NCOUNT = 115

D1:Bill ended with abs (log LAMBDA) < ramlim.

D2: ========== Smnmary =========

Dl:value = -515.41

D1:point
.70707D-01 .61259D-02 .75479D-02 .17453D+00 .88408D-01
'50018D+02 .50087D+07 .27404D+02 .25199D+02 .32864D+02
[31073D+05 11789D+01 .12145D+00 .99969D+00 -.10307D+00
122485D400 .13612D+01 .10938D+01 .10106D-01 ~-.31810D+00

- 18194D+00 .10125D+01 .64972D-01 .47044D+00 .87715D-01

.65110D+00

Dil:val. dif. = 124.72

D2:global profile
vs. log likelihood
—680.00 *i625.00 -600.00 -575.00 —550.90 -525.00 -500.00

0

.10 X* !

.20 *X !

.30 X*X !

.40 X* !

.50 *X !

.60 X*X !

.70 X*X | !

.80 X*XXXXX !

.90 XXXXX*xXXXXXX 1

1.00 ! XXXXXX*

D1:Hessian reset count = 3
Dl:end code =

DALL?
<L

n
>>>

E-MARTS model

mean compon

SAR index m
WPIL
M2CD

IIP-I
AIC =
npar
DALL call count

AR file

1082.
6

IWM.

(1) “y’ or ‘0’
(2) DALL(cf. Appendix D) is activated to maximize the log likelihood..

AR

ent: trend+seasonal
atrix
11

11
11
81

[

(3) AR part parameters are saved here.

[When AR model file is given]

d)ata or m)odel?
<<<

m e D)
>>>
AR file:
<<<
IWL.AR @D
>>>
file opener started for mt 17
DATASTARTINGLINE
tparam values:
1:title = IWM data
2:date = 19680101
3:time = 0
4:longitude = .000000D+00
5:latitude = .000000D+00
6:altitude = .000000D+00
7:length = 84
8:sampling = .250000D+00
9:unit = year
10:missing = .000000D+00
11:channel =
12:format = timeorder
13:1abel = yes
14:calibration = no
15:aic = .108281D+04
16:arfit = e-marts
17:archannel = 3
18:arorder = 1
19:nparam = 26
20:arlabel = yes
21:reserve = reserved key
22:reserve = reserved ke
channels:WPI M2CD IIP-I

(1) AR model file TWM.AR’ is selected.

6.5
[Finish]

1

:WPI

p)bp P)owe

ARdock:
<<<

q
>>>

wK area usage :
wK area limit :

iWK
iWK

area usage:
area limit:

(1) ‘q’ for quit.

Interactive System Analysis

menu: q)uit m)ask F)band B)lock 1l)ook <1- 3> N)ext

r n)oise i)mpulse * s)tep * f)req * c)oherency *
............... ¢D)
58885 2
1000000 i (3)
142 e (2)
10000 (3)

(2) Work area usage in the session.

(3) Present setting of compilation parameters ‘nwork’ and ‘iwork’.

[Variance Covariance Matrix]

ARdock
Variance-covariance/correlation matrix = 1)
role .01 .85 .73 -.21 L. (2)
HA .03 .15 .90 .26 ... (2)
HT 1.16 6.88 381.73 .29
ST -.12 .70 38.78 47.43
block diagonal model: 1 2 3 4 ..., (3)
(d_AIC = 4178.36) (4) (5)

(1) Elements of the Variance-covariance matrix ¥ (6) are given in the diagonal and bot-
tom left part. In the top right part, elements of the correlation matrix are given.

(2) The correlations between the first, second and third variable innovation series are
high.

(3) Power spectra and relative power contributions are computed using equations (48)
and (49) assuming block diagonal structure(45) of ¥. Present block diagonal structure
is specified by {1,2,3,4}. It is equivalent to assuming that ¥ is a diagonal matrix.

(4) d-AIC is the difference of AIC(78) and the AIC(71) of the ordinary MAR model(4).

(5) The value 4178.36 indicates the irrelevance of the block structure {1,2,3,4}, and warns
that the relative power contribution should be read with some reservation.

[Block structure]

block diagonal model: 1 2 3 4

(d_AIC = 4178.36)
1:role menu: q)uit m)ask F)band B)lock 1)ook <1- 4> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<<
B ¢D)
>>>

choose from: 1 2 3 4
block boundary:
<<<

§>>

block boundary:
<<<

4

>>>

block diagonal model: 3 4 ..., (2)
(d_AIC = 1241.97) ... 3

(1) Block structure change is selected.
(2) New block structure is {3,4}.

(3) Some improvement of d_AIC value.

[Masking(1)]

1:role menu: g)uit m)ask F)band B)lock 1)ook <1- 4> N)ext
p)bp Plower mn)oise i)mpulse * s)tep * f)req * c)oherency *

ARdock:
<K 1

m
>>>
presents m
role
HA

HT
ST

mask edit: g?r?o? L. (2)

mask edit: g?r7?o?

<<<
rl122 3
>>>
role 1100
HA 1100
HT ooi0 (4) (5)
ST 0001

mask edit: g?r?o?

<<<
g (6)
>>>

1:role menu: q)uit m)ask F)band B)lock 1)ook <1- 4> N)ext

p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *

ARdock:

(1) Selection of mask operation

(2) Instruction of zero-one reversal of rectangular area marked by the indexes (1,1) and
(4,4) of top-left and bottom-right corner elements.

(3) Instruction of zero-one reversal of rectangular area marked by the indexes (1,1) and
(2,2) of top-left and bottom-right corner elements.

(4) The operation is successfully carried out.
(5) Diagonal elements are free for mask operation.

(6) Exit from mask operation mode

[Masking(2)]
l:role menu: q)uit m)ask F)band B)lock 1l)ook <1- 4> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<<
m o e (¢D)
>>>
presents mask
role 1100
HA 1100
HT 0010
ST 0001/
mask edit: g?r7o?
<<
02 (2)
>>>
role 1000
HA 0 3
HT 0010
ST 0001
mask edit: g?r?o?
<<<
g
>>>
2:HA menu: q)uit m)ask F)band B)lock 1)ook <1- 4> N)ext (4)
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
(1) Selection of mask operation
(2) Selection of the ‘open loop response’ of the ‘2’-th variable.
(3) The mask with 1’s on the ‘2’-th row and diagonal is generated.
(4) Note that the ‘looking variable’ is changed to the ‘2’-th variable.
[Frequency Range]
3:IIP-I menu: g)uit m)ask F)band B)lock 1)ook <1- 3> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<<
F 1
>>>
frequency band:
<<<
0,0.6 e (2)

>>>

(1) Selection of frequency range change.

(2) Instruction to set a new range 0 cycle/‘time unit’ < f < 0.6 cycle/‘time unit’.

[Power Building Profile]

1:role menu: q)uit m)ask F)band B)lock 1)ook <1- 4> N)ext
p)bp Plower mn)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<
p
S>> ¢D)
power building profile
sec vs. role ... (2)
58.00 -2.00 -1.00 .20 1.?0 2.00 3.00
.45 *XX i
.70 XXk |
.95 * 1
1.20 * 1
1.45 *
1.70 x
1.95 *
2.20 *
2.45 *
2.70 *
2.95 x
3.20 *
3.45 *
3.70 *
3.95 *
4.20 *
4.45 *
4.70 *
4.95 *

(1) To see the power building profile PZ (¢) (35).

(2) The ‘graph’ shows the normalized power building profile PJ (¢)/o%, where the nor-
malizing factor oy, is of the original (not-masked) AR model.

[Power Spectrum and Relative Power Contribution]

3:IIP-I menu: g)uit m)ask F)band B)lock 1)ook <1- 3> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
<é§dock:

p
>>>
spectrum structure of the 3-th variable (2) (3) (&

cycle / year :IIP-I

XXX

XXX

XXXXX

XXXXXXX
XXXXXXXXXXX
XXXXXXXXXXXXXXXX:
XXXXXXXXXXXXXX
XXXXXXXXX
XXXXX

XXXX

XXX

XX

XX

X

X

1
12
1
12

TIMI IR LW~ R R OO0O0
O~ OO 00UTINONINIOWO
[

N
GLILWLWLWULWULWLWLWLWULWULWULWWWWUWW

(1) To see the power spectrum Py (f) defined by eq.(48) and relative power contribution
(49).

(2) Cumulative relative power contribution is shown in the middle area and the power
spectrum is shown in the right margin.

Y

(3) Vertical lines shown in relative power contribution area by ‘:’ corresponds to 20%,

40% , ... 100% levels.

(4) Scaling of the power spectrum is chosen so that the head of the ‘graph’ of the theo-
retical spectrum of ‘not-masked’ AR model touches the rightmost ‘:’-line.

[Coherency]

l:role menu: q)uit m)ask F)band B)lock 1l)ook <1- 4> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *

ARdock:
<<
C 3 1)
>>>
coherency of the 1 - th variable
cycle / sec :role
.00 : : 3 : : ! XXXXXXXXXXXXXXXX :
.16 : : 3 : : I XXXXXXXXXXXXXXX
.31 3 : : : : I XXXXXXXXXXX
47 : : : 3 I XXXXXXXX
.62 : 3 : XXXXXXXXX
.78 : 3 XXXXXXXXXXXXXX
.94 . : 3 XXXXX
1.09 : : 3: x
1.25 : : 3 :x
1.41 : : 3 X
1.56 : : 3 X
1.72 : : 3 X
1.88 : : 3 X
2.03 : . 3 X
2.19 : 0 3 X
2.34 : :3 X
2.50 : 3: X
(1) To see the coherency (43) between variable 1 and 3.
[Impulse Response]
1:role menu: q)uit m)ask F)band B)lock 1)ook <1- 4> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<
12 e (1)
>>>
response to impulse:HA Lol (2)
sec vs. role
68.00 -2.00 -1.00 .20 1.00 2.00 3.00
.05 *
.10 *
.15 *
.20 *
.25 *
.30 *
.35 *
.40 *
.45 *
.50 *
.55 *
.60 *
.65 *
.70 *
.75 *
.80 *
.85 *
.90 * !
.95 L
(1) Impulse input(50) to variable ‘2’ is applied.
(2) The normalized response(53). The looking variable is ‘1’.
[Fquuencijesponsd
l:role menu: q)uit m)ask F)band B)lock 1l)ook <1- 4> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<
i (1)
>>>
frequency response to:role LLLlL.iiieea... (2)
cycle / sec vs. role
-3.00 -2.00 -1.00 .00 1.00 2.00 3.00
.00 *X
.16 X*
.31 *X
.47 X*XXX
.62 XXX *
.78
.94
1.09 XX*XXXXXX
1.25 *XX
1.41 *
1.56 *
1.72 *
1.88 *
2.03 *
2.19 *
2.34 * |
2.50 * |

(1) Command to get the frequency response(56). Note that the result is meaningful only
when the summation in the formula converges.

(2) The amplitude factor of the normalized response(57)is shown. The looking variable
is ‘1.

[Step Response]

2:HA menu: g)uit m)ask F)band B)lock 1)ook <1- 4> N)ext
p)bp Plower mn)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<
S 1 e e ¢D)
>>>
response to step:role L (2)
sec vs. HA
58.00 -2.00 -1.00 .00 . 1.00 2.00 3.00
.45 *
.70 *
.95 *
1.20 *
1.45 *
1.70 *
1.95 x
2.20 *
2.45 *
2.70 *
2.95 x
3.20 *
3.45 *
3.70 *
3.95 *
4.20 *
4.45 *
4.70 *
4.95 *

(1) Step input(58) to variable ‘1’ is applied.
(2) The normalized response(60). The looking variable is ‘2.

[Looking Variable Change]

1:WPI menu: g)uit m)ask F)band B)lock 1)ook <1- 3> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<
12 e ¢D)
>>>

(1) Instruction to change the looking variable to ‘2’. Do not mistake the el for one.

[Simulation]
1:role menu: q)uit m)ask F)band B)lock 1)ook <1- 4> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
ARdock:
<<
o (1)
>>>
simulation with generated noise
sec vs. role
-15.00 -10.00 -5.00 .00 5.00 10.00 15.00
2.45 x|
4.95 * |
7.45 *
9.95 *
12.45 *
14.95 *
17 .45 *X
19.95 X*
22.45 *
24.95 X*
27 .45 *X
29.95 *
32.45 *
34.95 *
37.45 *
39.95 *
42 .45 *XXX
44 .95 XXX*
47 .45 *
49.95 *
l:role menu: g)uit m)ask F)band B)lock 1l)ook <1- 4> N)ext

p)bp Plower mn)oise i)mpulse * s)tep * f)req * c)oherency *

ARdock:
<<

N e 2)
>>> ,) .
simulation with generated noise
sec vs. Trole
-15.00 -10.00 -5.00 .00 5.00 10.00 15.00
2.45 [
4.95 1%
7.45 X*
9.95 *XX!
12.45 I XX*
14.95 1%
17.45 *
19.95 *X
22.45 | XX*
24.95 *XX
27.45 1 Xx
29.95 I Xx
32.45 *X
34.95 1%
37.45 * |
39.95 * |
42 .45 *
44 .95 [
47 .45 [
49.95 1%

(1) Output of AR model(5) to the innovation(6) input, which is equivalent to the output
of the linear system (1) to the driving innovation (2).

(2) Different innovation sequence is used every time. But the looking variable change
keeps the same noise.

[autodock]

4:ST menu: q)uit m)ask F)band B)lock 1)ook <1- 4> N)ext
p)bp Plower n)oise i)mpulse * s)tep * f)req * c)oherency *
<§§dock:

a 1
>>>
channels are . :role HA HT ST
specify watching set:
<<<
i100 (2) (3)
>>>
feedback character matrix with respect to the 1 -th variable
role L0 wrokokokx 1.0 1.3
HA 11.4 .0 1.5 1.3
HT 291.6 1067.0 .0 1.0
ST 1.0 1.1 1.2 .0
1234
role 1 - -1
HA 2- --2
HT 3 - - 3 (5)
ST 4 - 4
1234
feedback character matrix with respect to the 2 -th variable
role L0 skekokokokok 1.0 .9
HA .6 .0 .4 .3
HT 16.1 1372.8 .0 1.0
ST .9 1.1 1.3 .0
234
role 1 - 1
HA 2+ +-2
HT 3 - - 3 (5)
ST 4 -- 4
1234
feedback character matrix with respect to the 3 -th variable
role L0 skekokokokok 1.0 1.0
HA 6.0 .0 1.1 1.3
HT 27.7 867.2 .0 1.0
ST .9 1.1 1.2 .0
1234
role 1 - 1
HA 2 - -2
HT 3 - - 3 e (5)
ST 4 - 4

feedback character matrix with respect to the 4 -th variable

role LQ kskokokokok 1.0 2.1
HA 59.6 . 4.5 .
HT 6.3 482.3 .0 1.0
ST 1.0 1.0 .6 .0
1234
role 1 - -1
HA 2 - -+ 2
HT 3 - - 3 e (5)
ST 4 + 4
1234
summary e 3

feedback character matrix with respect to the
watching set: 11 00

maximum
role 1.0 *kxkkkx 1.0 1.3 i (4)
HA 11.4 1.0 1.5 1.3
HT 291.6 1372.8 1.0 1.0
ST | 1.0 1.1 1.3 1.0
minimum
role 1.0 *kkkkx 1.0 .9 (4)
HA 6 1.0 .4 1.3
HT 16.1 1067.0 1.0 1.0
ST 9 1.1 1.2 1.0
diagram
234

role 1 - -1
HA 2 % -2
HT 3 - - 3 e (5)
ST 4 - = 4

1234

autodock procedure is activated
inclusion of the first and the second variables to the watching set
‘summary ’ ignores the result on the third and fourth variable

The maximum and the minimum of the (1,4)-th element of feedback character matrix
are 1.3 and 0.9 respectively.

(5) ‘+/-" for positive/negative feedback. Feedback character between 0.9 and 1.1 is con-

sidered to be neutral. Under the present setting of watching set, the feedback char-
acter of effect from variable ‘1’ to variable ‘2’ and ‘3’ to ‘2’are ambiguous.

6.6 Key save

KS-file is Q@KEEP.KEY
KEY: s)ave, r)etrace, b)atch-mode or n)ullify
option: function

s : to save key inputs
n ! no save , no retrace
: for tutorial help make it S or N , instead of s or n.
r : to retrace saved inputs
: BACH mode
<<
S e ¢D)
>>>
SAVE mode
d)ata or m)odel?
<<
d (2)
>>>
data file:
<<
IWM.dat (2)
>>>
select components:
<<
231 2)
>>>
Initial data length:
<<
1 (2)
>>>
new model?
<K<
Yo e (2)
>>>
max AR order:
<<
1 (2)

>>>

mean component: c?717s?
<<

s

>>>

channels are:WPI

give periods:

<<<

144

>>>

search mode: f7a?m?
<<

f

>>>

SAR: a?m?n?

<<

n
>>>

TAR controller dim.:
<<

0

>>>
DALL?
<<

[QKEEP.KEY file]

M2CD

d)ata, m)odel or g)enerated data 7

d

data file:

IWM.dat

select components:
231

Initial data length:
1

new model?

m?x AR order:

mean component: c?717s?

s
give periods:
144
search mode: f7a?m?
EAR: a?m?n?
TAR controller dim.:
DALL?
y
DALL?
n
ARdock:
q

[Modified @KEEP.KEY file]

d)ata, m)odel or g)enerated data 7

d

data file:

IWM.dat

select components:
231

Initial data length:
1

new model?

m?x AR order:

mean component: c?717s?
s

give periods:
144
search mode: f7a?m?
EAR: a?m?n?
TéR controller dim.:

1
2
3
4

save mode

these inputs are saved in the QKEEP.KEY file

Add a line '--——----- " in the file QKEEP.KEY for one point manual input.
Add a line ‘======="in the file to end retracing there.

(1)
(2)
(3)
(4)

[Retrace]

7

KS-file is QKEEP.KEY
KEY: s)ave, r)etrace, b)atch-mode or n)ullify
option: function

s : to save key inputs
n . no save , no retrace
: for tutorial help make it S or N , instead of s or n.
r : to retrace saved inputs
b : BACH mode
<<
T e (¢D)
>>>
Input!:give periods: L. (2)
<<
44 4
>>>
DALL? e 3

end of retrace

(1) retrace mode is selected
(2) one point manual input

(3) retracing ended here

Acknowledgment

The authors are grateful to Mr. Md. Moshiur Rahman of the Graduate University for Advanced
Studies for testing the program and giving valuable suggestions for the improvement of this text.
They are also grateful to Ms Rumiko Muraoka for her beautiful job in the typesetting. This
monograph would have never been completed without her help. Experimental computations
were mainly done on the IBM RS/6000 SP (48 node).

References

1]

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle,
2nd International Symposium on Information Theory (Petrov, B. N. and Csaki, F. eds.),
Akademiai Kiado, Budapest, pp.267-281. (Reproduced in Breakthroughs in Statistics, volume
1, S.Kotz and N. L. Johnson, eds., Springer Verlag, New York, (1992).)

Akaike, H. (1980). “Likelihood and the Bayes procedure”, Bayesian Statistics, Bernardo,
J.M., De Groot, M.H., Lindley, D.U. and Smith, A.F.M. eds., University Press, Valencia,
Spain.

Akaike, H., Arahata, E. & Ozaki, T. (1975). TIMSAC-74: A time series analysis and control
program package - (1) & (2), Computer Science Monographs No.5 & No.6, The institute of
Statistical Mathematics, Tokyo.

Akaike, H. and Ishiguro, M. (1980). “BAYSEA, a Bayesian seasonal adjustment program”,
Computer Science Monographs, No. 13, The Institute of Statistical Mathematics, Tokyo.

Akaike, H. and Ishiguro, M. (1985). BAYSEA, in TIMSAC-84, Computer Science Mono-
graphs(Akaike, H.), Vol.22, pp.1-55, The Institute of Statistical Mathematics.

[6] Akaike, H., Kitagawa, G., Arahata, E. and Tada, F. (1979). “ TIMSAC-78", Computer
Science Monographs, No. 11, The Institute of Statistical Mathematics, Tokyo.

[7] Akaike, H. and Nakagawa, T. (1988). Statistical Analysis and Control of Dynamic Systems,
Kluwer Academic Publishers, Dordrecht/Tokyo.

[8] Davidon, W.C. (1968). Variance Algorithm for Minimization, Computer Journal, 10, 406-
410.

[9] DiBona, C. Ockman, S. & Stone, M. (1999). OPENSOURCES, O’Reilly & Associates, Inc.,
Tokyo.

[10] Forsythe, G.E. and Moler, C.B. (1969). Computer Solution of Linear Algebraic Systems,
Prentice-Hall, Inc.

[11] Golub, G.H. (1965). “Numerical methods for solving linear least square problems”, Nu-
mer. Math., 7, 206-216.

[12] Ishiguro, M. (1984). Computationally Efficient Implementation of a Bayesian Seasonal Ad-
justment Procedure, J. Time Series Analysis, Vol.5, No.4, pp.245-253.

[13] Ishiguro, M. (1989). System Analysis with Multivariate AR model, Operations Research,
Vol.34, No.10, pp.547-554. (in Japanese)

[14] Ishiguro, M. (1994). System Analysis and Seasonal Adjustment through Model Fitting, in
The First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational
Approach(Bozdogan, H.), PP.79-91, Kluwer, Netherland.

[15] Ishiguro. M. (1995). DEBB, a debugging bug, manual, ISM Report on Statistical Comput-
ing, RSC-026. (in Japanese)

[16] Ishiguro, M. (1998). Teleological Model, Proceedings of the Institute of Statistical Mathe-
matics, Vol.46, No.2, pp.383-399. (in Japanese)

[17] Ishiguro, M. (1999). Statistical Bicycle Model, ESTRELA, No.64, pp.90-93. (in Japanese)

[18] Ishiguro, M. (1999). Technical Aspects of Information Criterion Statistics, Vol.47, No.2, in
press. (in Japanese)

[19] Ishiguro, M. and Akaike, H. (1989). DALL: Davidon’s Algorithm for Log Likelihood Maxi-
mization, Computer Science Monographs, No.25.

[20] Ishiguro, M. and Kato, H (1995). Economic System Analysis, Mathematical Sciences,
No.389, pp.50-57. (in Japanese)

[21] Ishiguro, M. and Oya, T (1999). Analysis of Human/2-wheeled-Vehicle System by ARdock,
in Practice of Time series Analysis (Akaike,H. & Kitagawa, G. eds.), pp.209-228, Springer-
Verlag, New York.

[22] Kato, H., Naniwa, S. and Ishiguro, M. (1996). A Bayesian Multivariate Nonstationary Time
Series Model for Estimating Mutual Relationships among Variables, Journal of Econometrics,
Vol.75, pp.147-161.

[23] Kitagawa, G.(1981). A nonstationary time series model and its fitting by a recursive filter,
Journal of Time Series Analysis Vol.2, pp.103-116.

[24] Kitagawa, G. (1993). FORTRAN 77 Time Series Analysis Programing, Iwanami, Tokyo. (
in Japanese).

[25] Sakamoto, Y., Ishiguro, M. & Kitagawa, G. (1986). Akaike Information Criterion Statistics,
D.Reidel Publishing Company, Dordrecht/Tokyo.

Appendix

A Householder Transformation and Least Squares Method
For any complex column vector w of length 1, U defined by
(83) U=1-2ww"
is an unitary matrix, since
UU* =UU =1 — 4ww* + 4ww* ww”* = [.
Assume ||a||? = ||b||* and b*a is real. Then

1. U derived from

(84) a—b

w=—-—
la —b|’

has the property

(b—a)(®" —a)"

— a-2
Va = @ b—al?
b—a)d —a*)T
= a—(Hb)(—aH2 (a+b+a-0>)
_ b (b—a)(b*a — a*d)
16— al?
= b.

2. If b is of the form (b4 id,0,...,0)T, and ||b— a| is to be maximized, b and d are uniquely
determined by

(85) b= —ay h/\/a? + c?
d=—c; h/\/a? + c?

where @ = (a1 + ic1,---) and h = va*a.

Transformation U defined by eqgs. exp(85),(84) and (83) will be called Householder transforma-
tion derived from a.
For any n x k matrix

Tl Ti2 o Tk
Ta1 X2 o T2k
(86) X =
Inl Tp2 - Tnpk
Let U, be the Householder transformation derived from (11,21, ..,%,1)7, then we have
1 1 1
9551) 9552) e xgk)
O N €
(87) vx=| 0 "2 2k

0 ol

Likewise, using U,,_1 derived from (x%), :1:?2, ... ,x%))T, we have
e 1 1 1) 7
9551) 5’352) 9553) xgk)
2 2 2
) oF 0 :1:(22) xgs) x(2k:)
’ = : 2 2
(88) < 0, U,—1) UnX : 0 95:(33) x:(Sk)
We can continue this process to get finally,
e 1 1) 7
9551) :1:(12) x(lk)
2 2
0 x§2) xgk)
Ii_1, 0 1, of : 0o .
89 U, X =
(89) (0, Un—kt1) < 0, Un—) : SN ()
0

Note that

I 1 T
U= k—1, 0 .) 0 Un
07 Unkarl 0, Un—l
is an unitary matrix. Let y; and a; be m-vector and k-vector respectively, then the set of least
square problems can be solved by minimizing

(90) ly; — Xa;|I* = |U(y; — Xa))|* = |Uy; — Aa;|.
Using the notation

A B
< C>EU(X7y17y27""yM)’

the solutions of the least squares problems are obtained by

(91) (&17d27"'7&M) :A_IB
and
(92) e = (y— Xa1,y, — Xao, ...,y — Xan)"

(yl _XdlayQ _Xd277yM_XdM)

[Householder transformation and multiple integral] Using definitions of matrices A and
C, a useful multiple integral formula

K/2
IXa -y P2 g, — P oy
(93) /e 1/ 2day]detA|2e

is obtained, where det A = H]K:1 Ajj. Note that |C11? is the minimum value of || Xa; — yy||*

B BAYSEA

A Bayesian seasonal adjustment program BAYSEA proposed by Akaike and Ishiguro(1985)
decomposes the economic time series {y;} into the form

yi =T, + S; + I (i=1,2,...,N)

where T;, S; and I; represent the “trend cycle”, “seasonal” and “irregular” components respec-
tively. When the length L of the seasonal cycle is specified, BAYSEA minimizes the cost

N N L-1
(94) > (yi—Ti— Si)* +u® Z AFT;)? + 0 Z ALS?+w? > (D0 Sisy)?
i=1 i=1 i=1 i=1 j=0

in an attempt to get a result which approximately satisfies the conditions:

AFT, =0
AL S =0
I;=0
and
L—1
> Sinj=0,
j=0

where the difference operators are defined by
AT, =T, - T
ApS;=8;—Si—L
AT, =T, AYS; =5,
and

AT = A(APTIT), ARS = Ap(AkTls)).

To choose weighting factors u?, v? and w?, a Bayesian interpretation of the method is

employed. The minimization of the criterion (94) is equivalent to the maximization of the
quantity

1 N N L-1
‘“p{‘iz§:@r—n—nﬁf}>ump{ 2: (A*T})? u$ﬁ02+w%§jsFﬁﬂ},
i=1 i—1

j=0

which is then equivalent to the maximization of the product of the likelihood of the model for
the data Yy = (y17y27 .. 7?/N)

N
1 1
2 —II = (g — T — G.)2
f(y | 970) - balet 27'('0'2 exp{ 20_2 (yl E SZ) }

with its “prior distribution”

[w?(AME)? +0*(ALS)? + w?
1 7=0

2

(O
)

(95) ww\hawﬂawag)_c{_

o
~
hE
M
”n
|
S
——

of the parameter
0 - (T17T2’... ’TN’Sl’SQ’... 7SN)

In this Bayesian framework, the choice of the weighting factor is the choice of the “hyper
parameters” of the prior distribution (95). Akaike(1980) proposed the use of

(96) ABIC = —210g/f(y | 0,0%)7(0 | k,1,u?, v, w?, o%)d0

for the choice. Hyper parameter set with smaller ABIC value is considered to be a better choice.

C Kalman Filter

Define notations
2z = E{z|yy,.-- ,yj}
and
Vi = E{(ze — z4) (2t — 245)" | 0ss-- - 95}
for z; and y, of eq.(21) then the one step ahead prediction of state at time t — 1 is calculated by

(97) Zilt—1 = ‘I’Zt71|t71
and
(98) Vigr = OV_qy 07 +TUTT,

where U = E{v,vL} . When observation y, is obtained at time ¢, filtering estimate of the state
is calculated by

(99) Q= 2V @' + W
(100) Ky = Vi1 97 Q;
(101) Ay, =y, — Pz
(102) Zyt = Zyp-1 + KAy,
(103) Vi = (I — K@) Vye—q

1
(104) Uy = C — 5 (logdet Q + Ayj Q' Ayy),

where W = E{r,rL}. When observations at t = 1,2,3,...,T are given the log likelihood of the
model is given by

T
(105) = Y
t=No+1
C depends on the dimension of the observation. If the dimension is K, C' = —% log 2. There

are two opposite policy about the setting of initial value. One is to set Vijp = O and estimate
z1|0 by maximizing the log likelihood. The opposite way is to set Vy|g an effectively infinite one
and fix Zl‘o .

[Missing observations] When some, or possibly all, elements of y, are missing, we need
modify the above procedure. Let us assume that i(k)—th elements(k = 1,2,...,7;) of y, are
available. vy, in eq.(101), ® in egs. (99, 100, 101, 103) and W in eq.(99) are replaced by My,
M®, MW MT™ | respectively, where M is the 7; x K matrix whose k-i(k) elements(k = 1,2,...,7)
are 1 and all other elements are zero.

D DALL

Read "DALL” so that it rhymes with ”call”.

START

n=0. Set 1 and

PHI = §(,)

gn = d¢/d$ (a"")
LTy = Tp — Vngn
SPHI = ¢ (x4)
g, =do¢/dx (x,)
ROH = g; Vy.g,

Tpt1 =X, [SPHI =0

Tpt1 =xn, [SPHI =1ISPHI +1

g |

FINISH

> 1 @

Define A\, so that

satisfies

Ly — Lx = ‘/*(gn - g*)

- 1)‘/ng*gz‘/n/RHO

<« (4) ~1
Ase A
>3 \/
LAMBDA = « LAMBDA =0 LAMBDA = X\«
(5)
Vi1 = Vo + (LAMBDA —1)V,,9,9%V,,/RHO Reset V11

Figure 2. Flow chart of DALL

Assume that a function ¢ has the form defined by a negative definite matrix VO_1

1 _
(106) $(x) = ¢o + 5(x — 20)" Vg (z — 20),
then the relation between the gradient at a point and the maximizing point is given by
(107) g="Vy\(@ —).

That is, if the variance Vj of the function (106) is known and the gradient at a point is
known the maximizing point is readily calculated by

(108) x — Vog.

On the other hand, if gradients at sufficient number of points are known Vj can be estimated.
Davidon’s variance algorithm (Davidon, 1968) is constructed on these two facts.
DALL(Ishiguro & Akaike(1989))’s procedure is as follows

(1) The gradient is computed numerically by

(109) g = @ T step(d) gitgpi)(m —step@ e ;g5 rp

where e; is the unit vector of the i-th axis and IP is the dimension of the parameter vector
0. This computation can (and should, if possible) be executed parallely.

(2) The difference between SPHI and the maximum value is given by
1 Ty/—1
5 (@« —@0) Vo~ (@4 — o),
which is equal to
(110) “9"Vig.

RHO is the twice of an estimate of this value. It is implicitly assumed that the variance
V., is sufficiently close to Vj.

(3) Under the present assumptions, if V;, = V{ then g, = 0 and the procedure ends. The fact
that g, # 0 is an evidence of V,, # Vj. If (106) is the correct form, V{ satisfies

(111) Ty — T = Vo(g, — 94)-
Define v = —gl'V,g,/RHO, then)\, = |v/(y + 1)|.

(4) If LAMBDA =1, V,, is not improved. If LAMBDA = 1 is far from 1 the modification
might be too drastic, especially if the assumed form (106) of the function is dubious. Now
« and (are set at 0.25 and 4.0, respectively.

(5) Generally, the shape of a K-dimensional matrix A is known by calculating {Ab;, Abs,
Abs, ..., Abk}, where {b1, by, bs,... bx} is an orthogonal system of K vectors. If we

choose the basis so that b; = V,,g,, we have relations

(112) Viiib; =Vib; (j=2,...,K).

E Optimal Control Design

Let us start from an ARX model (25). Let zL(I = 1,2,..., M) be defined by

M M

Zi= Y A%yt > AWwiy ., (1=1,2,...,M—1)
m=L+1 m=L+1
21, =0
then we have
vy
z AWY
(113) AR I
M . : I
zy A% 0 0
Y1 A%w Gt
zi 4 A¥Y 0
+ ' wi—1 +
zly! Ajp 0
Define . .
zi = (yl, 2zl .. 21T
w = (¢7,07,07, ... 00T
and rewrite this equation to:
(114) zZt = \I/Zt_l + Fwt_l + ug
y;, = Dz

Definitions of ¥, T", ® etc. will be clear from eq.(114).
Let us define the cost of control by

N
(115) J = > &
t=1

T
(116) Jt = Et {(z;tl) (,S;QT g) < zii)tl) + (zt—H — Zt)T QA (Zt+1 — Zt)

+ (w; — wy_1)T R (wy — 'wtfl)})

(5

are positive definite. F; denotes the expectation with respect to z;y1 given wy, wy_jandz;. With
the dynamic programming method, the optimal input to {w;} the system(114) to minimize the
cost(115) is obtained(Windnall(1968)).

Defining A, B, H, g and f by

where Q2, R® and

(117) A = —ITQ+QMV + 5w -TTQ%)
(118) B QU + (v - NTQA (W — 1)
(119) H = T7Q+QT+17s +STTT + R+ R®
(120) g = Az + Rz

f = z'Bzi+w 1 "RAwi 1+ F {ut+1T(Q + QA)UtH}

Eq.(116) is rewritten into the form

(121) J, = w!Hw; — 27w, + f
= (w—H 'g9"H(w,—H 'g)+f-g"H'g

Using eq.(121), the optimalw;, is given by

(122) wi=H'g = H'Az + H'R*w;

= Gz + DT 'w,_q
and the minimum value of the cost(121) is
(123) J=f—g"H g.

(GN —t, DN=t) gives a control law to calculate optimal w; from z; and w;_;.
Setting t = N in J; Substitute Jy for Jy in J to get,

T - ~
(124) J = < EN) (5% %)(N >+(ZN—ZN—1)TQA(ZN—ZN—1)

WN-1 WN-1
N-2

+ (wy — wy—2)" R (wy_1 —wn_2) + Y Ji.
=1

This equation is obtained by replacing the first term < gf f%) of eq.(116) by
S\ Q S

B—ATH™'A —ATH-IRA
—~RAH'A RA»-RDH7'R™ |’
and N by N—1. Repeatedly using egs.(125), (117) and (118), we get a series of control laws
(G, DY), (G?,D?),..., and (GV,D"). Let us assume that this control law converges to a limit
as N tends to infinity. Let w; be computed by w; = G Z;4+ D*°W,_1. It is possible to eliminate

%o

z¢ to get a equation which contains y and w. Let G* = (G1,Ga,...,Gy), then we have
M M

(126) wo =Gy, + 3 > Gp (AW, APy | YerLoiok) 4 pOy, .
L=2k=L WitL-1-k

Then introducing L = k —m + 1 we get

M (M
w = Z {Z Gk+1—m(A%y,A,Zw)} (Zt_m) +Gi¢, + Dw;_.

m=1 \k=m t—m
Define
M
(127) AW = > Grpr-mAY
k=m

Avw Z]k\/lzl GkAZw + DY (m = 1)
m S G ALY (m=2,..., M)

then the dynamics of the whole system under this control is described by eq.(27).

F Debugging Tool, Bug-Pack
In debugging process it is desirable to have detailed output only when the bug is just coming.
This is possible if

1. we can write commands in the output record of the program under concern, and

2. let the program read the modified record.

Bug-pack is a subroutine package to realize this operation. A minimum tutorial course on the use
of bug subroutine is given here. The full manual for bug-pack routines will be given elsewhere.
The generic form of ‘bug’ call is

call bug (

i Lid , J, J1, J2 , Cid , Iid , Rid ,
o Message)

1. Find the following part in the main program.

call bug (1,0,0,0,’start’,0,0.d0,message)
call bug (1,0,0,0,’tutorial’,511,1999.d0,message)
if(message .eq. 123) write(6,*) ’message is received’
call sbuggle (jewel)
if(jewel .eq. 456) write(6,*) ’message can be smuggled in’
do 17j = 1,10
call bug (2,j,7,8, peekaboo’,j,0.d0, message)
call bug (1,j,10,10,’hello’,0,0.d0,message)
1 continue

2. Change the first 1 in the first line to 0.

call bug (0,0,0,0,’start’,0,0.d0,message)
3. Re-compile and run the program. Record the output in a file.
4. The prompt,

start: Bug 7 (<Y>es / with <M>ap / <N>o bug)

is given. Answer this by ‘y’ and continue the following computation as usual.

e ‘bug’ routine becomes active only after a call with Lid = 0.

e You will find other bug calls are also activated and make their outputs.

5. Name the output record file ‘bug.map’.
6. Edit ‘bug.map’. There should be lines,

COM: 0:LOOK

COM: O:LETITGO . -10:

bug.map command list

LOOK LETITGO MESSAGE LEVEL BACK QUIT

SKIP DUMMY

BUG: 0: 1:start : 1: 0: .000000000000000000000000000000000D+00:
BUG: 0: 1:tutorial: 2: 511: .199900000000000000000000000000000D+04 :
BUG: O: 1:hello : 3: 0: .000000000000000000000000000000000D+00:

e If your machine is a parallel computer, every machine will make print outs.

e If you are interested in the performance of the machine of ‘rank’ j, replace every
‘ COM: 0:’ by ‘ COM: j:’in the bug.map.

Find the line,
BUG: 0: 1:hello : 3: 0: .000000000000000000000000000000000D+00:
and add a command line so that you have

COM: 0:QUIT
BUG: 0: 1:hello : 3: 0: .000000000000000000000000000000000D+00:

10.

11.

Run the program and answer the prompt,

start: Bug 7 (<Y>es / with <M>ap / <N>o bug)

by ‘m’ and see what happens.

e This operation is “to start bug with a map”.

e Try another answer ‘n’ sometime.

. When you start bug with the above map, the execution of the program stops after printing

BUG: 0: 1:start ! 1: 0: .000000000000000000000000000000000D+0Q0 :
BUG: 0Q: 1:tutoriall! 2: 511: .199900000000000000000000000000000D+04 :
COM: 0:QUIT
e ‘bug’ accepts ‘QUIT’ command.

. Edit again ‘bug.map’ so that you have
BUG: 0: 1l:start : 1: 0: .000000000000000000000000000000000D+00:
COM: 0:MESSAGE 123
gggf 8§Q%i%utoria1: 2: 511: .199900000000000000000000000000000D+04 :
BUG: 0: 1:hello : 3: 0: .000000000000000000000000000000000D+00:
run the program, start bug with the map, and you will have
BUG: 0Q: 1l:start ! 1: 0: .000000000000000000000000000000000D+00:
COM: 0:MESSAGE 123:
BUG: O: 1:tutorial: 2: 511: .199900000000000000000000000000000D+04 :
message 18 received
COM: 0:QUIT

e ‘bug’ accepts ‘MESSAGE’.

Edit again ‘bug.map’ and change the line

COM: O0:MESSAGE 123
to
COM: O0:MESSAGE 456

and run the program, start bug with the map, then you will have

BUG: 0: 1l:start ! 1: 0: .000000000000000000000000000000000D+00:
COM: 0:MESSAGE 456:
BUG: 0: 1:tutorial! 2: 511: .199900000000000000000000000000000D+04 :

message can be smuggled in
COM: 0:QUIT

o ‘MESSAGE’ can be smuggled in.

Edit again ‘bug.map’ so that you have

BUG: 0: 1:start 1 0: .000000000000000000000000000000000D+00:
COM: O:LEVEL 2
COM: 0:MESSAGE 456
ggg: 83 %i%utorialz 2 511: .199900000000000000000000000000000D+04 :
BUG: 0: 1:hello 3 0: .000000000000000000000000000000000D+00:

BRg: ¢ fistart b Lt 9: ., ;000000000000000000000000000000000D+00:
M QinBadiasiii%’ AR R LR E LA REE R
BUG: 0: 1:tutorial! 2: 511: .199900000000000000000000000000000D+04 :
message can be smuggled in

BUG: 0: 2:peekaboo: 3: 7: .000000000000000000000000000000000D+00:
BUG: 0: 2:peekaboo: 4: 8: .000000000000000000000000000000000D+00:

COM: 0:QUIT

e Higher level ‘bug’ call with higher level ‘Lidy’ value is activated only after receiving
an appropriate ‘LEVEL’ command.

e ‘bug’ is active only when the arguments ‘J’, ‘J1’ and ‘J2’ satisfies the relation J1 < J
< J2.

12. Edit ‘bug.map’ and change the line

BUG: 0: 1:tutorial: 2: 511: .199900000000000000000000000000000D+04 :
to
BUG: 0: 1:tutorial: 2: 511: .200000000000000000000000000000000D+04 :

run the program, start bug with the map, and you will have

ﬁg%: 8: %:start ! 1: 0: .000000000000000000000000000000000D+00:
COM: 0:MESSAGE 456

BU 1:tu ! 511: 199900000000000000000000000000000D+04 :

mlsmatch!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
LD: 0: 1: tutorlal 2: 511: 20000000000000000000000OOOOOOOOOOD+04
DEB: 0: ratio = (new_rid-old_rid)/old_rid : .500D-03

DEB: O: letitgo : -10
DEB: 0:QUIT on the mismatch

e If a ‘bug.map’ record does not match, bug can stop the execution of the program.

e With this function, ‘bug’ can help program modifier, who is trying to get an efficient
procedure not changing the results.

13. Edit ‘bug.map’ and change the line
COM: O:LETITGO -10:

to make the ‘bug.map’

COM: 0:LOOK

COM: O:LETITGO -3:

bug.map command list

LOOK LETITGO MESSAGE LEVEL BACK QUIT

SKIP DUMMY

BUG: 0: 1:start : 1: 0: .000000000000000000000000000000000D+00:
COM: 0O:LEVEL 2

COM: O:MESSAGE 456

88& 8:Q%i%utor1a1: 2: 511: .200000000000000000000000000000000D+04 :
BUG: 0: 1:hello : 3: 0: .000000000000000000000000000000000D+00:

run the program, start bug with the map, and you will have

COM: 0:L0OO0K

COM: O:LETITGO -3

BOG: 0 Listart 1 Lo 0: .000000000000000000000000000000000D+00:
B iuBadias iiids P AR R LR LR
BUG: O0: 1:tu 2: 511: 199900000000000000000000000000000D+04 :
mlsmatch!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
OLD: O: 1:tutorial: 2: 511: .200000000000000000000000000000000D+04 :
DEB: 0: ratio = (new_rid-old_rid)/old_rid : .500D-03

DEB: O: letitgo : -3

message can be smuggled in

BUG: 0: 2:peekaboo: 3: 7: .000000000000000000000000000000000D+00:
BUG: 0: 2:peekaboo: 4: 8: .000000000000000000000000000000000D+00:
COM: 0:QUIT

e Even if ‘bug.map’ records do not match, bug can allow the continued execution of
the program by relaxing the ‘LETITGO’ value.

