Dependence Structure of Bivariate Order Statistics and its Applications

Xiaoling Dou

Abstract
We study the dependence structure of bivariate order statistics, and prove that if the underlying bivariate distribution \(H \) is positive quadrant dependent (PQD) then so is each pair of bivariate order statistics. As an application, we show that if \(H \) is PQD, the bivariate distribution \(K_{n}^{(n)} \), proposed by Bairamov and Bayramoglu (2012), is greater than or equal to Baker’s (2008) distribution \(H_{n}^{(n)} \). We also show that if \(H \) is PQD, \(K_{n}^{(n)} \) converges weakly to the Fréchet–Hoeffding upper bound as \(n \) tends to infinity.

Introduction
Bivariate order statistics
Suppose that \((X_{1}, Y_{1}), \ldots, (X_{n}, Y_{n}) \sim i.i.d. \) \(H(x, y) = \Pr(X \leq x, Y \leq y) \).
Margins: \(F(x) = \Pr(X \leq x) \); \(G(y) = \Pr(Y \leq y) \)
Order statistics: \(X_{1:n} \leq X_{2:n} \leq \cdots \leq X_{n:n} \); \(Y_{1:n} \leq Y_{2:n} \leq \cdots \leq Y_{n:n} \)

Distribution functions:
\[
F_{n}(x, y) := \Pr(X_{n} \leq x, Y_{n} \leq y) = \Pr(X_{n} \leq x) \Pr(Y_{n} \leq y) = F(x) \cdot G(y).
\]

Positive quadrant dependence (PQD): \(H(x, y) \geq F(x)G(y) \) for all \(x, y \).
Negative quadrant dependence (NQD): \(H(x, y) \leq F(x)G(y) \) for all \(x, y \).

Dependence Structure
Theorem 1.
For \(1 \leq r, s \leq n \), the distribution \(K_{n}^{(r,s)} \) is increasing in \(H \).
Proof: \(\frac{\partial}{\partial H} K_{n}^{(r,s)}(x, y) = n f_{n}^{(r-1,s-1)}(x, y) \geq 0 \).

References
- Bairamov, I. and Bayramoglu, K. (2013). From the Huang–Kotz FGM distribution to Baker’s (2008) distribution \(H_{n}^{(n)} \). We also show that if \(H \) is PQD, \(K_{n}^{(n)} \) converges weakly to the Fréchet–Hoeffding upper bound as \(n \) tends to infinity.

Corollary 1.
For \(1 \leq r \leq s \leq n \), the joint distribution of \((X_{r:n}, X_{s:n}) \), \(K_{n}^{(r,s)} \), is PQD if \(H \) is PQD, and is NQD if \(H \) is NQD.

Theoretical Applications
Baker’s (2008) distribution:
\[
H_{n}^{(n)}(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{n} \Pr(X_{i} \leq x, Y_{j} \leq y), \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \Pr(X_{i} \leq x, Y_{j} \leq y) = \frac{1}{n} \cdot r_{w} \geq 0.
\]

Bairamov and Bayramoglu’s (2013) distribution:
\[
K_{n}^{(n)}(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{n} \Pr(X_{i} \leq x, Y_{j} \leq y), \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \Pr(X_{i} \leq x, Y_{j} \leq y) = \frac{1}{n} \cdot r_{w} \geq 0.
\]

Monotonicity of \(K_{n}^{(n)}(x, y) \)
Fact: As \(n \to \infty \), \(H_{n}^{(n)}(x, y) \to \min\{F(x), G(y)\} \) (Dou et al. 2013)
Problem: As \(n \to \infty \), \(K_{n}^{(n)}(x, y) \to \min\{F(x), G(y)\} \) monotonically increases in \(n \)?

Theorem 2.
(i) \(K_{n}^{(n)} \geq H_{n}^{(n)} \) if \(K_{n}^{(n)} \geq H_{n}^{(n)} \) depending on \(H \) is PQD or NQD.
(ii) \(K_{n}^{(n)} \geq H_{n}^{(n)} \) if \(K_{n}^{(n)} \geq H_{n}^{(n)} \) depending on \(H \) is PQD or NQD.

The Institute of Statistical Mathematics

2013年6月14日 統計数理研究所 オープンハウス